题目内容

【题目】y轴右侧且平行于y轴的直线l被反比例函数)与函数)所截,当直线l向右平移4个单位时,直线l被两函数图象所截得的线段扫过的面积为__________平方单位.

【答案】8

【解析】y轴右侧且平行于y轴的直线l被反比例函数y=x0)与函数y=+2x0)所截,∴设它们的交点为ACAC=2,∵直线l向右平移4个单位,∴CD=4,∴直线l被两函数图象所截得的线段扫过的面积为 2×4=8平方单位.故答案为8.

型】填空
束】
14

【题目】函数的图象如右图所示,则结论:

两函数图象的交点的坐标为时,

时, 逐渐增大时, 随着的增大而增大, 随着的增大而减小.

其中正确结论的序号是

【答案】①③④

【解析】试题分析:反比例函数与一次函数的交点问题.运用一次函数和反比例函数的性质来解决的一道常见的数形结合的函数试题.一次函数和反比例函数的交点坐标就是一次函数与反比例函数组成的方程组的解.根据k0确定一次函数和反比例函数在第一象限的图象特征来确定其增减性;根据x=1时求出点BC的坐标从而求出BC的值;当x=2时两个函数的函数值相等时根据图象求得x2y1y2

试题解析:由一次函数与反比例函数的解析式

解得,

∴A22),故正确;

由图象得x2时,y1y2;故错误;

x=1时,B13),C11),∴BC=3,故正确;

一次函数是增函数,yx的增大而增大,反比例函数k0yx的增大而减小.故正确.

∴①③④正确.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网