题目内容
【题目】如图,已知AB∥CD,CN是∠BCE的平分线.
(1)若CM平分∠BCD,求∠MCN的度数;
(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;
(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.
【答案】(1)90°;(2)见解析;(3)∠BMC+∠BNC=180°不变,理由见解析
【解析】
(1)利用角平分线的定义和补角的定义可得结果;
(2)由垂直的定义可得∠MCN=90°,即∠BCN+∠BCM=90°,利用等式的性质可得2∠BCN+2∠BCM=180°,又因为∠BCE=2∠BCN,可得∠BCD=2∠BCM,即得结论;
(3)延长AB至F,过N,M分别作NG∥AB,MH∥AB,则有NG∥AB∥MH∥CD,利用平行线的性质易得∠BNG=∠ABN,∠CNG=∠ECN,∠BMH=∠FBM,∠CMH=∠DCM,由∠MBN=∠MCN=90°,可得∠ABN+∠FBM+∠ECN+∠DCM=180°,由角平分线的定义可得结论.
(1)∵CN,CM分别平分∠BCE和∠BCD,
∴BCN=∠BCE,∠BCM=
∠BCD,
∵∠BCE+∠BCD=180°,
∴∠MCN=∠BCN+∠BCM=∠BCE+
∠BCD=
(∠BCE+∠BCD)=90°;
(2)∵CM⊥CN,∴∠MCN=90°,即∠BCN+∠BCM=90°,
∴2∠BCN+2∠BCM=180°,
∵CN是∠BCE的平分线,∴∠BCE=2∠BCN,
∴∠BCE+2∠BCM=180°,
又∵∠BCE+∠BCD=180°,∴∠BCD=2∠BCM,
又∵CM在∠BCD的内部,∴CM平分∠BCD;
(3)如图,∠BMC+∠BNC=180°,延长AB至F,过N,M分别作NG∥AB,MH∥AB,则有NG∥AB∥MH∥CD,
∴∠BNG=∠ABN,∠CNG=∠ECN,∠BMH=∠FBM,∠CMH=∠DCM,
∵BM⊥BN,CM⊥CN,∴∠MBN=∠MCN=90°,
∵∠ABN+∠MBN+FBM=180°,∠ECN+∠MCN+∠DCM=180°,
∴∠ABN+∠FBM+∠ECN+∠DCM=180°,
∴∠BMC+∠BNC=∠BMH+∠CMH+∠BNG+∠CNG=∠ABN+∠FBM+∠ECN+∠DCM=180°,
∴∠BMC+∠BNC=180°不变.
![](http://thumb.zyjl.cn/images/loading.gif)