题目内容
【题目】下表中给出了变量x,与y=ax2,y=ax2+bx+c之间的部分对应值,(表格中的符号“…”表示该项数据已丢失)
x | ﹣1 | 0 | 1 |
ax2 | … | … | 1 |
ax2+bx+c | 7 | 2 | … |
(1)求抛物线y=ax2+bx+c的表达式
(2)抛物线y=ax2+bx+c的顶点为D,与y轴的交点为A,点M是抛物线对称轴上一点,直线AM交对称轴右侧的抛物线于点B,当△ADM与△BDM的面积比为2:3时,求B点坐标;
(3)在(2)的条件下,设线段BD与x轴交于点C,试写出∠BAD和∠DCO的数量关系,并说明理由.
【答案】(1) y=x2﹣4x+2;(2) 点B的坐标为(5,7);(3)∠BAD和∠DCO互补,理由详见解析.
【解析】
(1)由(1,1)在抛物线y=ax2上可求出a值,再由(﹣1,7)、(0,2)在抛物线y=x2+bx+c上可求出b、c的值,此题得解;
(2)由△ADM和△BDM同底可得出两三角形的面积比等于高的比,结合点A的坐标即可求出点B的横坐标,再利用二次函数图象上点的坐标特征即可求出点B的坐标;
(3)利用二次函数图象上点的坐标特征可求出A、D的坐标,过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,根据点B、D的坐标利用待定系数法可求出直线BD的解析式,利用一次函数图象上点的坐标特征可求出点N的坐标,利用两点间的距离公式可求出BA、BD、BN的长度,由三者间的关系结合∠ABD=∠NBA,可证出△ABD∽△NBA,根据相似三角形的性质可得出∠ANB=∠DAB,再由∠ANB+∠AND=180°可得出∠DAB+∠DCO=180°,即∠BAD和∠DCO互补.
(1)当x=1时,y=ax2=1,
解得:a=1;
将(﹣1,7)、(0,2)代入y=x2+bx+c,得:
,解得:,
∴抛物线的表达式为y=x2﹣4x+2;
(2)∵△ADM和△BDM同底,且△ADM与△BDM的面积比为2:3,
∴点A到抛物线的距离与点B到抛物线的距离比为2:3.
∵抛物线y=x2﹣4x+2的对称轴为直线x=﹣=2,点A的横坐标为0,
∴点B到抛物线的距离为3,
∴点B的横坐标为3+2=5,
∴点B的坐标为(5,7).
(3)∠BAD和∠DCO互补,理由如下:
当x=0时,y=x2﹣4x+2=2,
∴点A的坐标为(0,2),
∵y=x2﹣4x+2=(x﹣2)2﹣2,
∴点D的坐标为(2,﹣2).
过点A作AN∥x轴,交BD于点N,则∠AND=∠DCO,如图所示.
设直线BD的表达式为y=mx+n(m≠0),
将B(5,7)、D(2,﹣2)代入y=mx+n,
,解得:,
∴直线BD的表达式为y=3x﹣8.
当y=2时,有3x﹣8=2,
解得:x=,
∴点N的坐标为(,2).
∵A(0,2),B(5,7),D(2,﹣2),
∴AB=5,BD=3,BN=,
∴==.
又∵∠ABD=∠NBA,
∴△ABD∽△NBA,
∴∠ANB=∠DAB.
∵∠ANB+∠AND=180°,
∴∠DAB+∠DCO=180°,
∴∠BAD和∠DCO互补.