题目内容
【题目】已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点P作PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0).
(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;
(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;
(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.
【答案】
(1)证明:如图,连接PM,PN,
∵⊙P与x轴,y轴分别相切于点M和点N,
∴PM⊥MF,PN⊥ON且PM=PN,
∴∠PMF=∠PNE=90°且∠NPM=90°,
∵PE⊥PF,
∠NPE=∠MPF=90°﹣∠MPE,
在△PMF和△PNE中,
,
∴△PMF≌△PNE(ASA),
∴PE=PF
(2)证明:解:分两种情况:
①当t>1时,点E在y轴的负半轴上,如图1,
由(1)得△PMF≌△PNE,
∴NE=MF=t,PM=PN=1,
∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,
∴b﹣a=1+t﹣(t﹣1)=2,
∴b=2+a,
②0<t≤1时,如图2,点E在y轴的正半轴或原点上,
同理可证△PMF≌△PNE,
∴b=OF=OM+MF=1+t,a=OE=ON﹣NE=1﹣t,
∴b+a=1+t+1﹣t=2,
∴b=2﹣a.
综上所述,当t>1时,b=2+a;当0<t≤1时,b=2﹣a;
(3)证明:存在;
①如图3,当0<t<1时,
∵F(1+t,0),F和F′关于点M对称,M的坐标为(1,0),
∴F′(1﹣t,0)
∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,
∴Q(1﹣ t,0)
∴OQ=1﹣ t,
由(1)得△PMF≌△PNE
∴NE=MF=t,
∴OE=1﹣t,
当△OEQ∽△MPF
∴
∴ = ,此时无解,
当△OEQ∽△MFP时,
∴ ,
= ,
解得,t=2﹣ 或t=2+ (舍去);
②如图4,当1<t<2时,
∵F(1+t,0),F和F′关于点M对称,M的坐标为(1,0),
∴F′(1﹣t,0)
∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,
∴Q(1﹣ t,0)
∴OQ=1﹣ t,
由(1)得△PMF≌△PNE
∴NE=MF=t,
∴OE=t﹣1
当△OEQ∽△MPF
∴
∴ = ,
解得,t= ,
当△OEQ∽△MFP时,
∴ ,
= ,
解得,t= ,
③如图5,当t>2时,
∵F(1+t,0),F和F′关于点M对称,
∴F′(1﹣t,0)
∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,
∴Q(1﹣ t,0)
∴OQ= t﹣1,
由(1)得△PMF≌△PNE
∴NE=MF=t,
∴OE=t﹣1
当△OEQ∽△MPF
∴
∴ = ,
无解,
当△OEQ∽△MFP时,
∴ ,
= ,
解得,t=2+ ,t=2﹣ (舍去)
所以当t=2﹣ 或 或 或t=2+ 时,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似
【解析】(1)连接PM,PN,运用△PMF≌△PNE证明;(2)分两种情况:①当t>1时,点E在y轴的负半轴上;②当0<t≤1时,点E在y轴的正半轴或原点上,再根据(1)求解,(3)分两种情况,当1<t<2时,当t>2时,三角形相似时还各有两种情况,根据比例式求出时间t.
【题目】某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如图表(部分信息未给出):学生孝敬父母情况统计表:
选项 | 频数 | 频率 |
A | m | 0.15 |
B | 60 | p |
C | n | 0.4 |
D | 48 | 0.2 |
根据以上信息解答下列问题:
(1)这次被调查的学生有多少人?
(2)求表中m,n,p的值,并补全条形统计图.
(3)该校有1600名学生,估计该校全体学生中选择B选项的有多少人?