题目内容
【题目】如图,割线ABC与⊙O相交于B、C两点,D为⊙O上一点,E为弧BC的中点,OE交BC于F,DE交AC于G,∠ADG=∠AGD.
(1)求证明:AD是⊙D的切线;
(2)若∠A=60°,⊙O的半径为4,求ED的长.
【答案】(1)见解析;(2)DE=4.
【解析】
(1)要证AD是⊙O的切线,只要连接OD,再证∠ADO=90°即可;
(2)作OH⊥ED于H,根据垂径定理得到DE=2DH,根据等边三角形的性质和直角三角形的性质即可得到结论.
(1)证明:连接OD.
∵E为BC的中点,
∴OE⊥BC,
∵OD=OE,
∴∠ODE=∠OED,
∴∠AGD +∠OED=∠EGF+∠OED=90°,
∵∠AGD=∠ADG,
∴∠ADG+∠ODE=90°,即OD⊥AD,
∴AD是⊙O的切线;
(2)作OH⊥ED于H,
∴DE=2DH,
∵∠ADG=∠AGD,
∴AG=AD,
∵∠A=60°,
∴∠ADG=60°,
∴∠ODE=30°,
∵OD=4,
∴DH=OD=2,
∴DE=2DH=4.
练习册系列答案
相关题目