题目内容
梯形ABCD中,AB∥CD,若AD=m,CD=n,AB=m+n,则下列等式一定成立的是( )
A.∠A=∠B | B.∠D=2∠B | C.BC=m-n | D.BC=m+n |
过点C作CE∥AD交AB于点E,
∵AB∥CD,
∴四边形ADCE是平行四边形,
∴AE=CD=n,CE=AD=m,
∴BE=AB-AE=m,
∴CE=BE,
∴∠B=∠BCE,
∴∠D=∠AEC=∠B+∠BCE=2∠B.
故选B.

∵AB∥CD,
∴四边形ADCE是平行四边形,
∴AE=CD=n,CE=AD=m,
∴BE=AB-AE=m,
∴CE=BE,
∴∠B=∠BCE,
∴∠D=∠AEC=∠B+∠BCE=2∠B.
故选B.


练习册系列答案
相关题目