题目内容
【题目】如图,在△ABC中,AB=AC,点D是△ABC内一点,AD=BD,且AD⊥BD,连接CD.过点C作CE⊥BC交AD的延长线于点 E,连接BE.过点D作DF⊥CD交BC于点F.
(1)若BD=DE=,CE=,求BC的长;
(2)若BD=DE,求证:BF=CF.
【答案】(1)BC=2;(2)证明见解析.
【解析】试题分析:(1)利用勾股定理求出BE的长,进而再次利用勾股定理求出BC的长;
(2)连接AF,首先利用ASA证明出△BDF≌△EDC,得到,进而得到∠ADF=∠BDC,再次利用SAS证出△ADF≌△BDC,结合题干条件得到AF⊥BC,利用等腰三角形的性质得到结论.
试题解析:(1)∵BD⊥AD,点E在AD的延长线上,
∴
∵
∴
∵BC⊥CE,
∴
∴
(2)连接AF,
∵CD⊥BD,DF⊥CD,
∴
∴∠BDF=∠CDE,
∵CE⊥BC,
∴
∴∠DBC=∠CED,
在△BDF和△EDC中,
∵
∴△BDF≌△EDC(ASA),
∴DF=CD,
∴
∵∠ADB=∠CDF,
∴∠ADB+∠BDF=∠CDF+∠BDF,
∴∠ADF=∠BDC,
在△ADF和△BDC中,
∵
∴△ADF≌△BDC(SAS),
∴∠AFD=∠BCD,
∴
∴
∴AF⊥BC,
∴AB=AC,
∴BF=CF.
练习册系列答案
相关题目