题目内容
【题目】如图,广场中心菱形花坛ABCD的周长是32米,∠A=60°,则A、C两点之间的距离为( )
A. 4米 B. 米 C. 8米 D. 米
【答案】D
【解析】由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,将问题转化为求OA;根据∠BAD=60°得到△ABD为等边三角形,即可求出OB的长,再利用勾股定理求出OA即可求解.
设AC与BD交于点O.
∵四边形ABCD为菱形,
∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=32÷4=8米.
∵∠BAD=60°,AB=AD,
∴△ABD为等边三角形,
∴BD=AB=8米,
∴OD=OB=4米.
在Rt△AOB中,根据勾股定理得:OA=4(米),
∴AC=2OA=8米.
故选D.
练习册系列答案
相关题目