题目内容

【题目】如图,在⊙O中,AB为直径,AC=5AB=10

1)作以AC为底边的圆内接等腰△ACD;(要求:尺规作图,不写作法,保留作图痕迹)

2)求弦AC所对的圆周角。

【答案】1)见解析;(230°或150°

【解析】

1)作出AC的垂直平分线,与圆的交点即是三角形的顶点,有两种情况,连接即可得出答案;

2)根据圆周角定理和圆内接四边形的性质即可得到结论.

1)①作出AC的垂直平分线,与圆的交点D即是三角形的顶点,

②连接ADDC即可得出,

如图所示;

2)在⊙O中,AB为直径,AC=5AB=10

∴∠ACB=90°AC=AB

∴∠B=30°

∴∠AD2C=30°

∴∠AD1C=180°-30°=150°

∴弦AC所对的圆周角为30°150°

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网