题目内容

【题目】如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角. 实验与操作:
根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)

(1)作∠DAC的平分线AM;
(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜想并证明: 判断四边形AECF的形状并加以证明.

【答案】
(1)解:如图所示


(2)四边形AECF的形状为菱形.理由如下:

∵AB=AC,

∴∠ABC=∠ACB,

∵AM平分∠DAC,

∴∠DAM=∠CAM,

而∠DAC=∠ABC+∠ACB,

∴∠CAM=∠ACB,

∴EF垂直平分AC,

∴OA=OC,∠AOF=∠COE,

在△AOF和△COE中

∴△AOF≌△COE,

∴OF=OE,

即AC和EF互相垂直平分,

∴四边形AECF的形状为菱形


【解析】先作以个角的交平分线,再作线段的垂直平分线得到几何图形,由AB=AC得∠ABC=∠ACB,由AM平分∠DAC得∠DAM=∠CAM,则利用三角形外角性质可得∠CAM=∠ACB,再根据线段垂直平分线的性质得OA=OC,∠AOF=∠COE,于是可证明△AOF≌△COE,所以OF=OE,然后根据菱形的判定方法易得四边形AECF的形状为菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网