题目内容

【题目】如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论: ①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣ ;④3≤n≤4中,
正确的是(

A.①②
B.③④
C.①④
D.①③

【答案】D
【解析】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1, ∴该抛物线与x轴的另一个交点的坐标是(3,0),
∴根据图示知,当x>3时,y<0.
故①正确;
②根据图示知,抛物线开口方向向下,则a<0.
∵对称轴x=﹣ =1,
∴b=﹣2a,
∴3a+b=3a﹣2a=a<0,即3a+b<0.
故②错误;
③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),
∴﹣1×3=﹣3,
=﹣3,则a=﹣
∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),
∴2≤c≤3,
∴﹣1≤﹣ ≤﹣ ,即﹣1≤a≤﹣
故③正确;
④根据题意知,a=﹣ ,﹣ =1,
∴b=﹣2a=
∴n=a+b+c= c.
∵2≤c≤3,
c≤4,即 ≤n≤4.
故④错误.
综上所述,正确的说法有①③.
故选D.

【考点精析】利用二次函数图象以及系数a、b、c的关系对题目进行判断即可得到答案,需要熟知二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网