题目内容

【题目】如图,在正方形ABCD内作∠EAF=45°,AEBC于点EAFCD于点F,连接EF,过点AAHEF,垂足为H,将ADF绕点A顺时针旋转90°得到ABG,若BE=2,DF=3,则AH的长为______

【答案】6.

【解析】

由旋转的性质可知:AF=AG,∠DAF=∠BAG.

∵四边形ABCD为正方形,

∴∠BAD=90°.

又∵∠EAF=45°,

∴∠BAE+∠DAF=45°.

∴∠BAG+∠BAE=45°.

∴∠GAE=∠FAE.

在△GAE和△FAE中

∴△GAE≌△FAE.

∵AB⊥GE,AH⊥EF,

∴AB=AH,GE=EF=5.

设正方形的边长为x,则EC=x﹣2,FC=x﹣3.

在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.

解得:x=6.

∴AB=6.

∴AH=6.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网