题目内容
【题目】已知等腰三角形的一边长为2,周长为8,那么它的腰长为 ( )
A. 2 B. 3 C. 2或3 D. 不能确定
【答案】B
【解析】
等腰三角形的定义及性质:
(1)等腰三角形两腰相等;
(2)等边对等角;
(3)三线合一:顶角平分线,底边上的中线,底边上的高互相重合.
根据等腰三角形性质(1)和已知条件,进行分类讨论,即可得到答案,要注意的是一定要符合构成三角形的三边关系.
解:已知三角形一边长为2,
(1)当这一边是等腰三角形的腰时,它的腰长就为2,则底边是4
根据三角形三边关系,这种情况不符合条件;
(2)当这一边是等腰三角形的底边时
∵ 周长为8,底边为2
∴ 腰长为:=3 (等腰三角形两腰相等)
根据三角形三边关系,这种情况符合条件;
综上所述,这个等腰三角形的腰长为3.
故答案选B.
【题目】襄阳农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差x(℃) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 26 | 32 | 26 | 16 |
襄阳农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻的2天数据的概率;
(2)若选取的是12月1日与12月5日这两组数据,情根据12月2日至12月4日的数据,求y关于x的线性回归方程 = x+ ;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠? 注: = = , = ﹣ .