题目内容
【题目】如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,若△ABC的面积为16,则图中阴影部分的面积为_____.
【答案】4.
【解析】
因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.
解:解:如图,
点F是CE的中点,
∴△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,
∴S△BEF= S△BEC,
∵E是AD的中点,
∴S△BDE= S△ABD,S△CDE= S△ACD,
∴S△EBC= S△ABC,
∴S△BEF= S△ABC,且S△ABC=16,
∴S△BEF=4,
即阴影部分的面积为4cm2.
故答案为4.