题目内容
【题目】在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )
A. 若AD⊥BC,则四边形AEDF是矩形
B. 若AD垂直平分BC,则四边形AEDF是矩形
C. 若BD=CD,则四边形AEDF是菱形
D. 若AD平分∠BAC,则四边形AEDF是菱形
【答案】D
【解析】A. ∵AD⊥BC与四边形AEDF是矩形没有关系,故不正确;
B. ∵AD垂直平分BC与四边形AEDF是矩形没有关系,故不正确;
C. ∵BD=CD与四边形AEDF是菱形没有关系,故不正确;
D. ∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,
∴∠BAD=∠ADF.
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠CAD=∠ADF,
∴AF=DF,
∴四边形AEDF是菱形.
故选D.
练习册系列答案
相关题目