题目内容
阅读理解填空:
(1)如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.
证明:∵AB∥CD,
∴∠MEB=∠MFD( )
又∵∠1=∠2,
∴∠MEB-∠1=∠MFD-∠2,
即∠MEP=∠______
∴EP∥_____.( )
(2)如图,EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD.
解:∵EF∥AD,
∴∠2= ( )
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥ ( )
∴∠BAC+ =180 o( )
∵∠BAC=70 o,
∴∠AGD= 。
(1)如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.
证明:∵AB∥CD,
∴∠MEB=∠MFD( )
又∵∠1=∠2,
∴∠MEB-∠1=∠MFD-∠2,
即∠MEP=∠______
∴EP∥_____.( )
(2)如图,EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD.
解:∵EF∥AD,
∴∠2= ( )
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥ ( )
∴∠BAC+ =180 o( )
∵∠BAC=70 o,
∴∠AGD= 。
(1)两直线平行,同位角相等;MFQ;FQ;同位角相等,两直线平行
(2)∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°
(2)∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°
试题分析:根据平行线的判定和性质依次分析即可.
(1)∵AB∥CD,
∴∠MEB=∠MFD(两直线平行,同位角相等)
又∵∠1=∠2,
∴∠MEB-∠1=∠MFD-∠2,
即∠MEP=∠MFQ
∴EP∥FQ(同位角相等,两直线平行);
(2)∵EF∥AD,
∴∠2=∠3(两直线平行,同位角相等)
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥DG(内错角相等,两直线平行)
∴∠BAC+∠AGD =180 o(两直线平行,同旁内角互补)
∵∠BAC=70 o,
∴∠AGD=110°.
点评:解答本题的关键是熟练掌握两直线平行,同位角相等,两直线平行,同旁内角互补;同位角相等,两直线平行.
练习册系列答案
相关题目