题目内容
【题目】在平面直角坐标系中,抛物线y= x2﹣ x﹣2与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,点D与点C关于x轴对称,连接BD
(1)求点A,B,C的坐标.
(2)当点P时x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l,交抛物线于点M,交直线BD于点N
①当点P在线段OB上运动时(不与O、B重合),求m为何值时,线段MN的长度最大,并说明此时四边形DCMN是否为平行四边形
②当点P的运动过程中,是否存在点M,使△BDM是以BD为直角边的直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
【答案】
(1)
解:在y= x2﹣ x﹣2中,令y=0可得0= x2﹣ x﹣2,解得x=﹣1或x=4,
∴A(﹣1,0),B(4,0),
在y= x2﹣ x﹣2中,令x=0可得y=﹣2,
∴C(0,﹣2);
(2)
①∵D与C关于x轴对称,
∴D(0,2),且B(4,0),
∴可设直线BD解析式为y=kx+2,把B点坐标代入可得4k+2=0,解得k=﹣ ,
∴直线BD解析式为y=﹣ x+2,
∵P(m,0),
∴N(m,﹣ m+2),M(m, m2﹣ m﹣2),
∵P在线段OB上,
∴M在x轴下方,
∴MN=﹣ m+2﹣( m2﹣ m﹣2)=﹣ m2+m+4=﹣ (m﹣1)2+ ,
∵﹣ <0,
∴当m=1时,MN有最大值,最大值为 ,
∵CD=4≠MN,
∴四边形DCMN不是平行四边形;
②∵点P在线段OB上运动,
∴点M在第四象限,
∴∠MDB≠90°,
当△BDM是以BD为直角边的直角三角形时,只有MB⊥BD,如图,
设P(m,0),则M(m, m2﹣ m﹣2),且B(4,0),D(0,2),
∴BP=4﹣m,PM=﹣ m2+ m+2,OB=4,OD=2,
∵∠MBD=90°,
∴∠OBD+∠PBM=∠ODB+∠OBD=90°,
∴∠ODB=∠PMB,
∴△OBD∽△PMB,
∴ = ,即 = ,解得m=3或m=4(舍去),
∴M点坐标为(3,﹣2).
【解析】(1)利用抛物线解析式容易求得A、B、C的坐标;(2)①可求得直线BD的解析式,利用m可表示出MN的长,则可利用二次函数的性质求得MN的最大值,再判断MN与CD是否相等即可;②由题意可知只能BM⊥BD,可设出M点的坐标,从而可表示出BP和MP的长,利用△OBD∽△PMB,可得到关于M点坐标的方程,从而可求得M点的坐标.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小,以及对平行四边形的判定与性质的理解,了解若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.