题目内容
【题目】如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.
(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.
下面是两位学生有代表性的证明思路:
思路1:不需作辅助线,直接证三角形全等;
思路2:不证三角形全等,连接BD交AF于点H.…
请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);
(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求 的值;
(3)在(2)的条件下,若 =k(k为大于
的常数),直接用含k的代数式表示
的值.
【答案】
(1)
解:如图1,
证法一:∵四边形ABCD为菱形,
∴AB=CD,AB∥CD,
∵四边形ABEF为平行四边形,
∴AB=EF,AB∥EF,
∴CD=EF,CD∥EF,
∴∠CDM=∠FEM,
在△CDM和△FEM中
,
∴△CDM≌△FEM,
∴DM=EM,
即点M是DE的中点;
证法二:∵四边形ABCD为菱形,
∴DH=BH,
∵四边形ABEF为平行四边形,
∴AF∥BE,
∵HM∥BE,
∴ =
=1,
∴DM=EM,
即点M是DE的中点;
(2)
解:∵△CDM≌△FEM,
∴CM=FM,
设AD=a,CM=b,
∵∠ABE=135°,
∴∠BAF=45°,
∵四边形ABCD为菱形,
∴∠NAF=45°,
∴四边形ABCD为正方形,
∴AC= AD=
a,
∵AB∥EF,
∴∠AFN=∠BAF=45°,
∴△ANF为等腰直角三角形,
∴NF= AF=
(
a+b+b)=a+
b,
∴NE=NF+EF=a+ b+a=2a+
b,
∴ =
=
=
(3)
解:∵ =
=
+
=k,
∴ =k﹣
,
∴ =
,
∴ =
=
+1=
+1=
【解析】(1)证法一,利用菱形性质得AB=CD,AB∥CD,利用平行四边形的性质得AB=EF,AB∥EF,则CD=EF,CD∥EF,再根据平行线的性质得∠CDM=∠FEM,则可根据“AAS”判断△CDM≌△FEM,所以DM=EM;
证法二,利用菱形性质得DH=BH,利用平行四边形的性质得AF∥BE,再根据平行线分线段成比例定理得到 =
=1,所以DM=EM;(2)由△CDM≌△FEM得到CM=FM,设AD=a,CM=b,则FM=b,EF=AB=a,再证明四边形ABCD为正方形得到AC=
a,接着证明△ANF为等腰直角三角形得到NF=a+
b,则NE=NF+EF=2a+
b,然后计算
的值;(3)由于
=
=
+
=k,则
=
,然后表示出
=
=
+1,再把
=
代入计算即可.
![](http://thumb.zyjl.cn/images/loading.gif)