题目内容
把一根3分米长的圆木截成3段,表面积比原来增加12.56平方分米,这根圆柱体圆木的体积是 立方分米,若将原来的圆木削成一个最大的圆锥,圆锥的体积是 立方分米.
考点:圆柱的侧面积、表面积和体积,圆锥的体积
专题:立体图形的认识与计算
分析:每截一次就增加2个圆柱的底面,截成3段需要截(3-1)=2次,那么就增加了2×2=4个底面,由此可求得圆柱的底面积,然后利用V=Sh即可求出圆柱的体积.圆柱内最大的圆锥与原圆柱等底等高,所以削出的最大的圆锥的体积是圆柱的体积的
,由此即可解答.
| 1 |
| 3 |
解答:
解:平均截成3段后就增加了4个圆柱底面的面积,
所以圆柱的底面积为:12.56÷4=3.14(平方分米),
由V=Sh可得圆柱体积:3.14×3=9.42(立方分米),
圆锥体积=
×9.42=3.14(立方分米)
答:这根圆柱体圆木的体积是9.42立方分米,若将原来的圆木削成一个最大的圆锥,圆锥的体积是3.14立方分米.
故答案为:9.42;3.14.
所以圆柱的底面积为:12.56÷4=3.14(平方分米),
由V=Sh可得圆柱体积:3.14×3=9.42(立方分米),
圆锥体积=
| 1 |
| 3 |
答:这根圆柱体圆木的体积是9.42立方分米,若将原来的圆木削成一个最大的圆锥,圆锥的体积是3.14立方分米.
故答案为:9.42;3.14.
点评:此题考查等底等高的圆柱与圆锥的体积倍数关系的灵活应用,抓住圆柱内最大的圆锥的特点是解决此类问题的关键.
练习册系列答案
相关题目
等底的圆柱和圆锥的高的比是3:1,则圆柱和圆锥的体积比是( )
| A、1:2 | B、3:1 |
| C、9:1 | D、27:1 |
等底等高的圆柱和圆锥,圆柱的体积与圆锥的体积和24立方分米,圆柱的体积是( )
| A、8立方分米 |
| B、16立方分米 |
| C、18立方分米 |
| D、20立方分米 |