题目内容

分组裂项:化简
1
3×1
+
1
4×2
+
1
5×3
+
1
6×4
+…+
1
1999×1997
+
1
2000×1998
=
 
考点:分数的巧算
专题:计算问题(巧算速算)
分析:一般情况下,分数计算是先通分.但是本题通分计算将很繁,所以不通分,利用如下一个关系式:
1
n(n+2)
=
1
2
1
n
-
1
n+2
)来把每一项拆成两项之差,然后再计算即可求出结果.
解答: 解:
1
3×1
+
1
4×2
+
1
5×3
+
1
6×4
+…+
1
1999×1997
+
1
2000×1998

=
1
2
×(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+
1
4
-
1
6
+…+
1
1998
-
1
2000
),
=
1
2
×(1+
1
2
-
1
1999
-
1
2000
),
=
1
2
×(1+
1
2
-
1
1999
-
1
2000
),
=
1
2
×
5993001
3998000

=
5993001
7996000

故答案为:
5993001
7996000
点评:此题主要考查了分数的巧算,本题解题关键是使用拆项法是使总和中出现一些可以相消的相反数的项,这种方法在分数巧算中很常用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网