题目内容
计算:(1+
+
+
)×(
+
+
+
)-(1+
+
+
+
)×(
+
+
)=
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 7 |
分析:通过观察,此题数字有一定特点,于是可设n=
+
+
,m=
+
+
+
,然后把m、n代入算式,通过化简,计算即可.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 7 |
解答:解:设n=
+
+
,m=
+
+
+
,则:
=(1+
+
+
)×(
+
+
+
)-(1+
+
+
+
)×(
+
+
),
=(1+n)×m-(1+m)×n,
=m+mn-n-mn,
=m-n,
=(
+
+
+
)-(
+
+
),
=
.
故答案为:
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 7 |
=(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
=(1+n)×m-(1+m)×n,
=m+mn-n-mn,
=m-n,
=(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
=
| 1 |
| 7 |
故答案为:
| 1 |
| 7 |
点评:此题解答的关键在于认真观察,通过用字母代替算式的方法,进行简算.
练习册系列答案
相关题目