11.(2009安徽卷文)(本小题满分12分)

  某良种培育基地正在培育一种小麦新品种A,将其与原有的一个优良品种B进行对照

试验,两种小麦各种植了25亩,所得亩产数据(单位:千克)如下:.     

品种A:357,359,367,368,375,388,392,399,400,405,414,

   415,421,423,423,427,430,430,434,443,445,451,454

品种B:363,371,374,383,385,386,391,392,394,395,397

     397,400,401,401,403,406,407,410,412,415,416,422,430

(Ⅰ)完成所附的茎叶图

(Ⅱ)用茎叶图处理现有的数据,有什么优点?.     

(Ⅲ)通过观察茎叶图,对品种A与B的亩产量及其稳定性进行比较,写出统计结论。

[思路]由统计知识可求出A、B两种品种的小麦稳定性大小并画出茎叶图,用茎叶图处理数据,看其分布就比较明了。.     

[解析](1)茎叶图如图所示

A
 
B
9 7
35
 
8 7
36
3
5
37
1 4
8
38
3 5 6
9 2
39
1 2 4 457 7
5 0
40
0 1 1 3 6 7
5 4 2
41
0 2 5 6
7 3 3 1
42
2
4 0 0
43
0
5 5 3
44
 
4 1
45
 

(2)用茎叶图处理现有的数据不仅可以看出数据的分布状况,而且可以看出每组中的具体数据.

(3)通过观察茎叶图,可以发现品种A的平均每亩产量为411.1千克,品种B的平均亩产量为397.8千克.由此可知,品种A的平均亩产量比品种B的平均亩产量高.但品种A的亩产量不够稳定,而品种B的亩产量比较集中D平均产量附近.

7.(2009山东卷文)(本小题满分12分)

  一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):

 
轿车A
轿车B
轿车C
舒适型
100
150
z
标准型
300
450
600

按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.

(1)    求z的值.    

(2)    用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;

(3)    用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,  8.6, 9.2,  9.6,  8.7,  9.3,  9.0,  8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

解: (1).设该厂本月生产轿车为n辆,由题意得,,所以n=2000. z=2000-100-300-150-450-600=400

(2) 设所抽样本中有m辆舒适型轿车,因为用分层抽样的方法在C类轿车中抽取一个容量为5的样本,所以,解得m=2也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S1,S2;B1,B2,B3,则从中任取2辆的所有基本事件为(S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),(B1 ,B2), (B2 ,B3) ,(B1 ,B3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件: (S1, B1), (S1, B2) , (S1, B3) (S2 ,B1), (S2 ,B2), (S2 ,B3),( (S1, S2),所以从中任取2辆,至少有1辆舒适型轿车的概率为.

(3)样本的平均数为,

那么与样本平均数之差的绝对值不超过0.5的数为9.4,  8.6,  9.2,  8.7,  9.3,  9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为.

[命题立意]:本题为概率与统计的知识内容,涉及到分层抽样以及古典概型求事件的概率问题.要读懂题意,分清类型,列出基本事件,查清个数.,利用公式解答.

6.(2009山东卷理)(本小题满分12分)

   在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为

       
0     
2       
  3  
  4  
  5  
     p    
0.03     
  P1        
  P2      
P3     
P4       

(1)    求q的值;   

(2)    求随机变量的数学期望E;

(3)    试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。

解:(1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25,, P(B)= q,.

根据分布列知: =0时=0.03,所以,q=0.8.

(2)当=2时, P1=    

=0.75 q( )×2=1.5 q( )=0.24

=3时, P2  ==0.01,

=4时, P3==0.48,

=5时, P4=

=0.24

所以随机变量的分布列为

       
0     
2       
  3  
  4  
  5  
  p    
0.03     
  0.24       
  0.01     
0.48    
0.24        

随机变量的数学期望

(3)该同学选择都在B处投篮得分超过3分的概率为

;

该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.

由此看来该同学选择都在B处投篮得分超过3分的概率大.

[命题立意]:本题主要考查了互斥事件的概率,相互独立事件的概率和数学期望,以及运用概率知识解决问题的能力.

 0  438268  438276  438282  438286  438292  438294  438298  438304  438306  438312  438318  438322  438324  438328  438334  438336  438342  438346  438348  438352  438354  438358  438360  438362  438363  438364  438366  438367  438368  438370  438372  438376  438378  438382  438384  438388  438394  438396  438402  438406  438408  438412  438418  438424  438426  438432  438436  438438  438444  438448  438454  438462  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网