2、原子核的衰变:
(1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒
|
类 型 |
衰变方程 |
规 律 |
|
|
|
新核 |
|
|
|
新核 |
射线是伴随
衰变放射出来的高频光子流
在
衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子,即:![]()
(2)半衰期:放射性元素的原子核有半数发生衰变所需的时间叫半衰期。(对大量原子核的统计规律)计算式为:
N表示核的个数 ,此式也可以演变成
或
,式中m表示放射性物质的质量,n 表示单位时间内放出的射线粒子数。以上各式左边的量都表示时间t后的剩余量。
半衰期由核内部本身的因素决定,跟原子所处的物理、化学状态无关。
例题:
衰变为
要分别经过多少次
衰变和
衰变?
解析:原子核发生一次
衰变时质量数减少4,电荷数减少2,发生一次
衰变时质量数不变,电荷数增加1,因此,根据质量数由232减少到208知发生
衰变次数为6次。
原子核发生6次
衰变电荷数要减少12,核电荷数将由90减少到78,现在实际电荷数为82,为了使电荷数从 78增加到82,故要发生82-78=4次
衰变。
例题:两个放射性元素样品A、B,当A有
的原子核发生衰变时,B恰好有
的原子核发生了衰变,可知A和B的半衰期之比
为多少?
解析:由题知这段时间内A有1/16未衰变的,亦即1/24未衰变,经历时间
;B有1/64未衰变,即1/26未衰变,
,则
,得
=3∶2
1、天然放射现象
(1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。
放射性:物质能发射出上述射线的性质称放射性
放射性元素:具有放射性的元素称放射性元素
天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象
天然放射现象:表明原子核存在精细结构,是可以再分的
(2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹,如图(1)
各种放射线的性质比较
|
种 类 |
本 质 |
质量(u) |
电荷(e) |
速度(c) |
电离性 |
贯穿性 |
|
α射线 |
氦核 |
4 |
+2 |
0.1 |
最强 |
最弱,纸能挡住 |
|
β射线 |
电子 |
1/1840 |
-1 |
0.99 |
较强 |
较强,穿几mm铝板 |
|
γ射线 |
光子 |
0 |
0 |
1 |
最弱 |
最强,穿几cm铅版 |
三种射线在匀强磁场、匀强电场、正交电场和磁场中的偏转情况比较:
如⑴、⑵图所示,在匀强磁场和匀强电场中都是β比α的偏转大,γ不偏转;区别是:在磁场中偏转轨迹是圆弧,在电场中偏转轨迹是抛物线。⑶图中γ肯定打在O点;如果α也打在O点,则β必打在O点下方;如果β也打在O点,则α必打在O点下方。
例题:如图所示,铅盒A中装有天然放射性物质,放射线从其右端小孔中水平向右射出,在小孔和荧光屏之间有垂直于纸面向里的匀强磁场,则下列说法中正确的有
A.打在图中a、b、c三点的依次是α射线、γ射线和β射线
B.α射线和β射线的轨迹是抛物线
C.α射线和β射线的轨迹是圆弧
D.如果在铅盒和荧光屏间再加一竖直向下的匀强电场,则屏上的亮斑可能只剩下b
解析:由左手定则可知粒子向右射出后,在匀强磁场中α粒子受的洛伦兹力向上,β粒子受的洛伦兹力向下,轨迹都是圆弧。由于α粒子速度约是光速的1/10,而β粒子速度接近光速,所以在同样的混合场中不可能都做直线运动(如果一个打在b,则另一个必然打在b点下方。)本题选AC。
例题: 如图所示,是利用放射线自动控制铝板厚度的装置。假如放射源能放射出α、β、γ三种射线,而根据设计,该生产线压制的是3mm厚的铝板,那么是三种射线中的____射线对控制厚度起主要作用。当探测接收器单位时间内接收到的放射性粒子的个数超过标准值时,将会通过自动装置将M、N两个轧辊间的距离调___一些。
解析:α射线不能穿过3mm厚的铝板,γ射线又很容易穿过3mm厚的铝板,基本不受铝板厚度的影响。而β射线刚好能穿透几毫米厚的铝板,因此厚度的微小变化会使穿过铝板的β射线的强度发生较明显变化。即是β射线对控制厚度起主要作用。若超过标准值,说明铝板太薄了,应该将两个轧辊间的距离调节得大些。