B、C、D,应选A.

[说明]  此例题用多种方法求解选项,指出3种选择题的技巧.

∴应选D

x轴交点中在原点右边最接近原点的交点,而在原点左边与x轴交点中最

的图象.

∴选D

[说明]  y=Asin(ωx+j)(A>0,ω>0)x∈R的图象可由y=sinx的图象经下列各种顺序变换得到的.

(1)先平移,后伸缩:

①把y=sinx的图象向左(j>0)或向右(j<0)沿x轴方向平移|j|个单位;(相位变换)

(周期变换)

③把所有各点纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍,横坐标不变(振幅变换)

(2)先伸缩,后平移

①把y=sinx图象上各点的横坐标缩短(ω>1)或伸长(0<ω<1)到原

(相位变换)

③把所有各点纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍横坐标不变(振幅变换)

再把横坐标缩小到原来的一半,纵坐标扩大到原来的4倍,则所得的图象的解析式是   [   ]

∴选A.

[例17]  方程sin2x=sinx在区间(0,2π)内解的个数是

                                                  [   ]

A.1      B.2       C.3        D.4

[分析]  本题有两类解法

(1)求出方程在(0,2π)内的所有解,再数其解的个数.而决定选项,对于选择题,此法一般不用.

(2)在同一坐标系中作出函数y=sin2x和y=sinx的图象,如图2-18所示.

它们在(0,2π)内交点个数,即为所求方程解的个数,从而应选C.

它体现了数、形的结合.

[例18]  设函数f(x)是定义在R上的周期为3的奇函数,且f(1)=2,则f(5)=____

解:∵f(x)是奇函数,且f(1)=2,∴f(-1)=-2

又∵f(x)是周期为3的函数.  ∴f(3+x)=f(x)

∴f(-1+3)=f(-1)=-2  即f(2)=-2

f(2+3)=f(2)=-2  即f(5)=-2

[例19]  有一块扇形铁板,半径为R,圆心角为60°,从这个扇形中切割下一个内接矩形,即矩形的各个顶点都在扇形的半径或弧上,求这个内接矩形的最大面积.

[分析]  本题入手要解决好两个问题.

(1)内接矩形的放置有两种情况,如图2-19所示,应该分别予以处理.

(2)求最大值问题这里应构造函数,怎么选择便于以此表达矩形面积的自变量.

解:如图2-19(1)设∠FOA=θ,则FG=Rsinθ

又设矩形EFGH的面积为S,那么

又∵0°<θ<60°,故当cos(2θ-60°)=1,即θ=30′时,

如图2-19 (2),设∠FOA=θ,则EF=2Rsin(30°-θ),在△OFG中,∠OGF=150°

设矩形的面积为S.

那么S=EFFG=4R2sinθsin(30°-θ)

=2R2[cos(2θ-30°)-cos30°]

又∵0<θ<30°,故当cos(2θ-30°)=1

 0  403250  403258  403264  403268  403274  403276  403280  403286  403288  403294  403300  403304  403306  403310  403316  403318  403324  403328  403330  403334  403336  403340  403342  403344  403345  403346  403348  403349  403350  403352  403354  403358  403360  403364  403366  403370  403376  403378  403384  403388  403390  403394  403400  403406  403408  403414  403418  403420  403426  403430  403436  403444  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网