4、[解析]:由>b且c>d>b+d,而由>b+d >b且c>d,可举反例。选A
3、[解析]由得,选B
2、[解析]集合,∴选D
1-10. BDBAB CACAD
1、[解析] ,∴,选B。
(16)(本小题满分12分)
在△ABC中,sin(C-A)=1,sinB=.
(Ⅰ)求sinA的值;
(Ⅱ)设AC=,求△ABC的面积.
(17)(本小题满分12分)
某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区,B肯定是受A感染的。对于C,因为难以判定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是1/2.同样也假设D受A、B和C感染的概率都是1/3.在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量。写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望)。
(18)(本小题满分13分)
如图,四棱椎F-ABCD的底面ABCD是菱形,其对角线AC=2,BD=.AE、CF都与平面ABCD垂直,AE=1,CF=2.
(Ⅰ) 求二面角B-AF-D的大小;
(Ⅱ) 求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积。
第(18)题图
(19)(本小题满分12分)
已知函数
(20)(本小题满分13分)
点P(x0,y0)在椭圆1(a>b>0)上,x0=, y0=. 直线与直线: 垂直,O为坐标原点,直线OP的倾斜角为,直线的倾斜角为.
(Ⅰ)证明:点P是椭圆 与直线的唯一交点;
(Ⅱ)证明:tan,tan,tan构成等比数列。
(21)(本小题满分13分)
首项为正数的数列{}满足.
(Ⅰ)证明:若 为奇数,则对一切 , 都是奇数;
(Ⅱ)若对一切,都有,求的取值范围。
W数学(理科)试题 第4页(共4页)
2009年普通高等学校招生全国统一考试(安徽卷)
数学(理科)
(11)若随机变量X~N(μ,σ2),则P(X≤μ)= .
(12)以直角坐标系的原点为极点,x轴的正半轴为极轴,
并在两种坐标系中取相同的长度单位,已知直线的
极坐标方程为,它与曲线
(α为参数)相交于两点A和B,则
|AB|= .
(13)程序框图(即算法流程图)如图所示,其输出结果是
.
(14)给定两个长度为1的平面向量和,它们的夹
角为120°.如图所示,点C在以O为圆心的圆弧
上变动.若,其中,则x+y
的最大值是 .
(15)对于四面体ABCD,下列命题正确的是
(写出所有正确命题的编号).
①相对棱AB与CD所在的直线异面;
②由顶点A作四面体的高,其垂足是△BCD三条高线的交点;
③若分别作△ABC和△ABD的边AB上的高,则这两条高所在的直线异面;
④分别作三组相对棱中点的连线,所得的三条线段相交于一点;
⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.
(1)i是虚数单位,若(a、b∈R),则乘积ab的值是
(A)-15 (B)-3 (C)3 (D)15
(2)若集合A={x|︱2x-1︱<3},B={x|<0},则A∩B是
(A){x|-1<x<或2<x<3} (B){x|2<x<3}
(C){x|<x<2} (D){x|-1<x<}
(3)下列曲线中离心率为的是
(A) (B)
(C) (D)
(4)下列选项中,是的必要不充分条件的是
(A),
(B), 的图像不过第二象限
(C),
(D), 在上为增函数
(5)已知为等差数列,,。以表示的前n项和,则使得达到最大值的n是
(A)21 (B)20 (C)19 (D)18
(6)设,函数的图像可能是
(7)若不等式组 所表示的平面区域被直线分为面积相等的两
部分,则k的值是
(A) (B) (C) (D)
(8)已知函数,的图像与直线的两个相邻交点的距离等于,则的单调递增区间是
(9)已知函数在R上满足,则曲线在点处的切线方程是
(10)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点种任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于
(在此卷上答题无效)
数 学(理科)
第Ⅱ卷(非选择题 共100分)
请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.
22. (本小题满分14分)
设数列的前项和为,对任意的正整数,都有成立,记。
(I)求数列与数列的通项公式;
(II)设数列的前项和为,是否存在正整数,使得成立?若存在,找出一个正整数;若不存在,请说明理由;
(III)记,设数列的前项和为,求证:对任意正整数都有;
[解析](I)当时,
又
∴数列是首项为,公比为的等比数列,
∴, …………………………………3分
(II)不存在正整数,使得成立。
证明:由(I)知
∴当n为偶数时,设
∴
当n为奇数时,设
∴对于一切的正整数n,都有
∴不存在正整数,使得成立。 …………………………………8分
(III)由得
又,
当时,,
当时,
…………………………………14分
21. (本小题满分12分)
已知椭圆的左、右焦点分别为,离心率,右准线方程为。
(I)求椭圆的标准方程;
(II)过点的直线与该椭圆交于两点,且,求直线的方程。
[解析](I)由已知得,解得
∴ 所求椭圆的方程为 …………………………………4分
(II)由(I)得、
①若直线的斜率不存在,则直线的方程为,由得
设、,
∴ ,这与已知相矛盾。
②若直线的斜率存在,设直线直线的斜率为,则直线的方程为,
联立,消元得
∴ ,
又∵
化简得
解得
∴ 所求直线的方程为 …………………………………12分
18. (本小题满分12分)
为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客。在省外游客中有持金卡,在省内游客中有持银卡。
(I)在该团中随机采访2名游客,求恰有1人持银卡的概率;
(II)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率.
[解析]I)由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡.
设事件A为“采访该团2人,恰有1人持银卡”,则
所以采访该团2人,恰有1人持银卡的概率是. …………………………………6分
(II)设事件B为“采访该团2人,持金卡人数与持银卡人数相等”,可以分为:
事件B1为“采访该团2人,持金卡0人,持银卡0人”,或事件B2为“采访该团2人,持金卡1人,持银卡1人”两种情况,则
所以采访该团2人,持金卡与持银卡人数相等的概率是. ……………………12分
19(本小题满分12分)
如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,
(I)求证:;
(II)设线段、的中点分别为、,求证: ∥
(III)求二面角的大小。
[解析]解法一:
因为平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB,
所以BC⊥平面ABEF.
所以BC⊥EF.
因为⊿ABE为等腰直角三角形,AB=AE,
所以∠AEB=45°,
又因为∠AEF=45,
所以∠FEB=90°,即EF⊥BE.
因为BC平面ABCD, BE平面BCE,
BC∩BE=B
所以
…………………………………………6分
(II)取BE的中点N,连结CN,MN,则MNPC
∴ PMNC为平行四边形,所以PM∥CN.
∵ CN在平面BCE内,PM不在平面BCE内,
∴ PM∥平面BCE. …………………………………………8分
(III)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD.
作FG⊥AB,交BA的延长线于G,则FG∥EA.从而FG⊥平面ABCD,
作GH⊥BD于H,连结FH,则由三垂线定理知BD⊥FH.
∴ ∠FHG为二面角F-BD-A的平面角.
∵ FA=FE,∠AEF=45°,
∠AEF=90°, ∠FAG=45°.
设AB=1,则AE=1,AF=,则
在Rt⊿BGH中, ∠GBH=45°,BG=AB+AG=1+=,
,
在Rt⊿FGH中, ,
∴ 二面角的大小为
…………………………………………12分
解法二: 因等腰直角三角形,,所以
又因为平面,所以⊥平面,所以
即两两垂直;如图建立空间直角坐标系,
(I) 设,则,
∵,∴,
从而
,
于是,
∴⊥,⊥
∵平面,平面,
(II),从而
于是
∴⊥,又⊥平面,直线不在平面内,
故∥平面
(III)设平面的一个法向量为,并设=(
即
取,则,,从而=(1,1,3)
取平面D的一个法向量为
故二面角的大小为
20(本小题满分12分)
已知函数的图象在与轴交点处的切线方程是。
(I)求函数的解析式;
(II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.
[解析](I)由已知,切点为(2,0),故有,即……①
又,由已知得……②
联立①②,解得.
所以函数的解析式为 …………………………………4分
(II)因为
令
当函数有极值时,则,方程有实数解,
由,得.
①当时,有实数,在左右两侧均有,故函数无极值
②当时,有两个实数根情况如下表:
所以在时,函数有极值;
当时,有极大值;当时,有极小值;
…………………………………12分