21.(本小题满分12分)
已知函数
,其中
![]()
(1) 当
满足什么条件时,
取得极值?
(2) 已知
,且
在区间
上单调递增,试用
表示出
的取值范围.
解: (1)由已知得
,令
,得
,
要取得极值,方程
必须有解,
所以△
,即
, 此时方程
的根为
,
,
所以
![]()
当
时,
|
x |
(-∞,x1) |
x 1 |
(x1,x2) |
x2 |
(x2,+∞) |
|
f’(x) |
+ |
0 |
- |
0 |
+ |
|
f (x) |
增函数 |
极大值 |
减函数 |
极小值 |
增函数 |
所以
在x 1, x2处分别取得极大值和极小值.
当
时,
![]()
|
x |
(-∞,x2) |
x 2 |
(x2,x1) |
x1 |
(x1,+∞) |
|
f’(x) |
- |
0 |
+ |
0 |
- |
|
f (x) |
减函数 |
极小值 |
增函数 |
极大值 |
减函数 |
所以
在x 1, x2处分别取得极大值和极小值.
综上,当
满足
时,
取得极值.
![]()
(2)要使
在区间
上单调递增,需使
在
上恒成立.
即
恒成立, 所以![]()
设
,
,
令
得
或
(舍去),
![]()
当
时,
,当
时
,
单调增函数;
当
时
,
单调减函数,
所以当
时,
取得最大,最大值为
.
所以![]()
当
时,
,此时
在区间
恒成立,所以
在区间
上单调递增,当
时
最大,最大值为
,所以![]()
综上,当
时,
; 当
时,
![]()
[命题立意]:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.