[例1]有如下一组y与x的数据


-3
-2
-1
0
1
2
3
y
9
4
1
0
1
4
9

问y与x的(样本)相关系数r是多少?这是否说明y与x没有关系?

错解:

所以相关系数r=0,即y与x没有关系.

错因:相关系数r=0并不是说明y与x没有关系,而是说明y与x没有线性相关关系,但有可能有非线性相关关系.

正解:

所以相关系数r=0,即y与x没有线性相关关系,但有可能有非线性相关关系.

此题中y与x之间存在着的二次相关关系的.

[例2]某工厂在2004年的各月中,一产品的月总成本y(万元)与月产量x(吨)之间有如下数据:

x
4.16
4.24
4.38
4.56
4.72
4.96
5.18
5.36
5.6
5.74
5.96
6.14
y
4.38
4.56
4.6
4.83
4.96
5.13
5.38
5.55
5.71
5.89
6.04
6.25

若2005年1月份该产品的计划产量是6吨,试估计该产品1月份的总成本.

分析:可将此问题转化为下面三个问题:

(1)画出散点图,根据散点图,大致判断月总成本y与月产量之间是否有线性相关关系;

(2)求出月总成本y与月产量x之间的线性回归方程;

(5)    若2005年1月份该产品的计划产量是6吨,试估计该产品1月份的总成本.

错解:省去第一步,即把判断判断月总成本y与月产量之间是否有线性相关关系的过程舍去,想当然其具有线性相关关系,直接代入公式,求出线性回归方程.

错因:此题的月总成本y与月产量x之间确实是有线性相关关系,若不具有则会导致错误.因此判断的过程不可少.

正解:(1)散点图见下面,从图中可以看到,各点大致在一条直线附近,说明x与y有较强的线性相关关系.

(2)代入公式(*)得:a=0.9100,b=0.6477,线性回归方程是:y=0.9100x+0.6477.

(3)当x=6.0时,y=0.9100(万元),即该产品1月份的总成本的估计值为6.11万元.

[例3]变量有线性回归方程,现在将的单位由变为的单位由    变为,则在新的回归方程中.      .

错解:0.1

错因:由   且的值变为原来的的值变为原来的可得的值应为原来的.

正解:0.01

[例4]假定一个物体由不同的高度落下,并测量它落下的时间,几个测量结果如下表所示:

高度s(cm)
40
60
100
130
150
180
200
220
240
时间t(ms)
353
387
505
552
579
648
659
700
725

高度(距离)与时间之间的关系由公式给出,这里g是重力加速度的值.

(1)画出s关于t的散点图,这些点在一条直线附近吗?

(2)设,画出s关于x的散点图,这些点在一条直线附近吗?

(3)求出s关于x的线性回归方程.

解:(1)高度s关于时间t的散点图见下面,从图中可以看到这些点似乎在一条直线附近,也好像在一条抛物线附近

(2)高度s关于x的散点图见下面,从图中可以看到这些散点大致在一条直线附近

(3)可以求得s关于x的线性回归方程是s=0.0004901x-18.8458

[例5]测得某国10对父子身高(单位:英寸)如下:

父亲身高(x)
60
62
64
65
66
67
68
70
72
74
儿子身高(y)
63.5
65.2
66
65.5
66.9
67.1
67.4
68.3
70.1
70

(1)画出散点图;

(2)求出y与x之间的线性回归方程;

(3)如果父亲的身高为73英寸,估计儿子的身高.

解:(1)散点图见下面:

(2)从散点图可以看出,这些点都分布在一条直线附近,可求得线性回归方程为

(3)当时,

所以当父亲的身高为73英寸时,估计儿子的身高约为69.9英寸.

 0  396981  396989  396995  396999  397005  397007  397011  397017  397019  397025  397031  397035  397037  397041  397047  397049  397055  397059  397061  397065  397067  397071  397073  397075  397076  397077  397079  397080  397081  397083  397085  397089  397091  397095  397097  397101  397107  397109  397115  397119  397121  397125  397131  397137  397139  397145  397149  397151  397157  397161  397167  397175  447090 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网