摘要: 连结圆锥曲线上的两点的线段称为圆锥曲线的弦. 直线:.曲线:.与的两个不同的交点A.B...则.是方程组的两组解.方程组消元后化为关于(或者)的一元二次方程().判别式.应有.所以.是方程的解.由根与系数的关系求出..所以A.B两点间距离为.即弦长公式.也可以写成关于的形式.其弦长公式为.
网址:http://m.1010jiajiao.com/timu_id_4355958[举报]
(1)试用x0,y0,m,n的代数式分别表示xE和xF;
(2)若C的方程为
| x2 |
| a2 |
| y2 |
| b2 |
(3)请选定一条除椭圆外的圆锥曲线C,试探究xE和xF经过某种四则运算(加、减、乘、除),其结果是否是与MN和点P位置无关的定值,写出你的研究结论并证明. 查看习题详情和答案>>
x0,y0)、M(m,n)是圆锥曲线C上不与顶点重合的任意两点,MN是垂直于x轴的一条垂轴弦,直线MP,NP分别交x轴于点E(xE,0)和点F(xF,0).
(Ⅰ)试用x0,y0,m,n的代数式分别表示xE和xF;
(Ⅱ)已知“若点P(x0,y0)是圆C:x2+y2=R2上的任意一点(
x0•y0≠0),MN是垂直于x轴的垂轴弦,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0),则xE•xF=R2”.类比这一结论,我们猜想:“若曲线C的方程为
| x2 |
| a2 |
| y2 |
| b2 |
圆锥曲线上任意两点连成的线段称为弦。若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦。已知点
、
是圆锥曲线C
上不与顶点重合的任意两点,
是垂直于
轴的一条垂轴弦,直线
分别交
轴于点
和点
。
![]()
(1)试用
的代数式分别表示
和
;
(2)若C的方程为
(如图),求证:
是与
和点
位置无关的定值;
(3)请选定一条除椭圆外的圆锥曲线C,试探究
和
经过某种四则运算(加、减、乘、除),其
结果是否是与
和点
位置无关的定值,写出你的研究结论并证明。
查看习题详情和答案>>