ÌâÄ¿ÄÚÈÝ
2£®| A£® | FA´óÓÚFB | |
| B£® | FA¡¢FBµÄºÏÁ¦´óÓÚmg | |
| C£® | »»ÖÊÁ¿¸ü´óµÄµÆÁý£¬FBµÄÔö¼ÓÁ¿±ÈFAµÄÔö¼ÓÁ¿´ó | |
| D£® | ÎÞÂÛÈçºÎµ÷½ÚÐüµãAµÄλÖã¬FA¡¢FB¶¼²»¿ÉÄÜ´óÓÚmg |
·ÖÎö ¶ÔOµãÊÜÁ¦·ÖÎö£¬ÊÜÖØÁ¦ºÍÁ½¸öÀÁ¦£¬¸ù¾ÝƽºâÌõ¼þ²¢½áºÏºÏ³É·¨·ÖÎö¼´¿É
½â´ð
½â£º¶ÔOµãÊÜÁ¦·ÖÎö£¬ÈçͼËùʾ£º
¸ù¾ÝƽºâÌõ¼þ£¬²¢½áºÏÕýÏÒ¶¨Àí£¬ÓУº
$\frac{{F}_{A}}{sin¦Â}=\frac{{F}_{B}}{sin¦Á}=\frac{G}{sin£¨180¡ã-¦Á-¦Â£©}$
A¡¢ÓÉÓÚ¦Á£¾¦Â£¬¹Ê$\frac{{F}_{A}}{{F}_{B}}=\frac{sin¦Â}{sin¦Á}£¼1$£¬¹ÊA´íÎó£»
B¡¢¸ù¾ÝƽºâÌõ¼þ£¬FA¡¢FBµÄºÏÁ¦µÈÓÚmg£¬¹ÊB´íÎó£»
C¡¢$\frac{{F}_{A}}{{F}_{B}}=\frac{sin¦Â}{sin¦Á}£¼1$£¬¹Ê»»ÖÊÁ¿¸ü´óµÄµÆÁý£¬¦Á¡¢¦Â¾ù²»±ä£¬¸ù¾Ý$\frac{{F}_{A}}{{F}_{B}}=\frac{sin¦Â}{sin¦Á}=C=\frac{¡÷{F}_{A}}{¡÷{F}_{B}}$£¬FBµÄÔö¼ÓÁ¿±ÈFAµÄÔö¼ÓÁ¿´ó£¬¹ÊCÕýÈ·£»
D¡¢µ÷½ÚÐüµãAµÄλÖã¬Ê¹AµãÏò×óÒÆ¶¯£¬µ±¦Á+¦ÂÇ÷Ïò180¡ãʱ£¬¿ÉʹFA¡¢FB¶¼´óÓÚmg£¬¹ÊD´íÎó£»
¹ÊÑ¡£ºC
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·Oµã´¦ÓÚÈýÁ¦Æ½ºâ״̬£¬½áºÏƽºâÌõ¼þ¡¢ºÏ³É·¨ºÍÕýÏÒ¶¨ÀíÁÐʽ·ÖÎö£¬ÄѶÈÊÊÖУ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
12£®¶ÔÓÚÉú»îÉú²úÊÂÀýµÄÃèÊö£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | °²×°±ÜÀ×Õëʱ£¬Ó¦ÀûÓõ¼ÏßÓë´óµØÏàÁ¬ | |
| B£® | ¸Éµç³ØµÄÌå»ýÔ½´ó£¬µç³ØµÄµç¶¯ÊÆÒ²Ô½´ó | |
| C£® | µçÈÝÆ÷´æ´¢µÄµçºÉÁ¿Ô½´ó£¬µçÈÝÆ÷µÄµçÈÝÒ²Ô½´ó | |
| D£® | ʹÓöàÓõç±í²âÁ¿²»Í¬×èÖµµÄµç×èʱ£¬Ò»¶¨ÒªÔÙ´ÎÅ·Ä·µ÷Áã |
13£®
ÈçͼËùʾ£¬Á½ÖÊÁ¿¾ùΪmµÄA¡¢BСÇò£¨Ð¡ÇòÊÓΪÖʵ㣩£¬Í¨¹ý³¤ÎªlµÄ²»¿ÉÉ쳤ÇáÉþˮƽÏàÁ¬£¬ÇáÉþÖеãµÄÕýÏ·½H´¦¹Ì¶¨Ò»¹â»¬¶¤×ÓO£®ÏÖͬʱÎÞ³õËÙÊÍ·ÅÁ½Ð¡Çò£¬¿ÕÆø×èÁ¦²»¼Æ£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£®ÔÚСÇòÏÂÂäµÄ¹ý³ÌÖУ¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ´Ó¿ªÊ¼ÏÂÂäµ½¸Õµ½´ï×îµÍµãµÄ¹ý³ÌAСÇòµÄ»úеÄܲ»Êغã | |
| B£® | ´Ó¿ªÊ¼ÏÂÂäµ½¸Õµ½´ï×îµÍµãµÄ¹ý³ÌA¡¢BСÇòµÄ×Ü»úеÄÜÊØºã | |
| C£® | ÇáÉþÓ붤×ÓÅöǰ˲¼ä£¬AСÇòÊܵ½ÇáÉþµÄÀÁ¦´óСΪ$\frac{4mgH}{l}$ | |
| D£® | ÇáÉþÓ붤×ÓÅöºó˲¼ä£¬AСÇòÊܵ½ÇáÉþµÄÀÁ¦´óСΪ$\frac{4mgH}{l}$ |
17£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ϵͳÔÚÎüÊÕÈÈÁ¿Ê±ÄÚÄÜÒ»¶¨Ôö¼Ó | |
| B£® | ÒºÌå±íÃæ´æÔÚ×ÅÕÅÁ¦ÊÇÒòΪҺÌå±íÃæ²ã·Ö×Ó¼äµÄ¾àÀë´óÓÚÒºÌåÄÚ²¿·Ö×Ó¼äµÄ¾àÀë | |
| C£® | ²¼ÀÊÔ˶¯·´Ó³ÁË»¨·ÛС¿ÅÁ£ÄÚ²¿·Ö×ÓµÄÎÞ¹æÔòÔ˶¯ | |
| D£® | ÃܱÕÔÚÆø¸×ÀïµÄÒ»¶¨ÖÊÁ¿ÀíÏëÆøÌå·¢ÉúµÈѹÅòÕÍʱ£¬µ¥Î»Ê±¼äÅöײÆ÷±Úµ¥Î»Ãæ»ýµÄÆøÌå·Ö×ÓÊýÒ»¶¨¼õÉÙ | |
| E£® | Ó°ÏìÕô·¢¿ìÂýÒÔ¼°Ó°ÏìÈËÃǶԸÉˬÓ볱ʪ¸ÐÊܵÄÒòËØÊÇ¿ÕÆøÖÐË®ÕôÆøµÄѹǿÓëͬһζÈÏÂË®µÄ±¥ºÍÆûѹµÄ²î¾à |
7£®¿ÆÑ§¼ÒÃǽüÆÚ·¢ÏÖÁËÒ»¿Å¾àÀëµØÇò1400¹âÄêµÄϵÍâÐÐÐÇ¡°Kepler-452b¡±£¬ËüÎ§ÈÆ×ÅÒ»¿ÅÓëÌ«ÑôÖÊÁ¿¼¸ºõÏàµÈµÄºãÐÇÔËÐУ®ÕâÊÇÆù½ñ·¢ÏÖµÄ×î½Ó½üµØÇòµÄ¡°ÁíÒ»¸öµØÇò¡±£®Ò»Î´Öª·ÉÐÐÎïÒÔÖÜÆÚTÌù½ü¡°Kepler-452b¡±±íÃæ×ö°ë¾¶ÎªRµÄÔÈËÙÔ²ÖÜÔ˶¯£¬ÍòÓÐÒýÁ¦³£Á¿ÎªG£¬Ôò£¨¡¡¡¡£©
| A£® | ¿ÉÒÔ¼ÆËã³öδ֪·ÉÐÐÎïµÄÖÊÁ¿Îª$\frac{{4{¦Ð^2}{R^3}}}{{G{T^2}}}$ | |
| B£® | ÐÐÐÇ¡°Kepler-452b¡±µÄµÚÒ»ÓîÖæËÙ¶ÈΪ$\sqrt{\frac{2¦ÐR}{T}}$ | |
| C£® | ÐÐÐÇ¡°Kepler-452b¡±±íÃæµÄ×ÔÓÉÂäÌå¼ÓËÙ¶ÈΪ$\frac{{4{¦Ð^2}R}}{T^2}$ | |
| D£® | ÐÐÐÇ¡°Kepler-452b¡±µÄÃܶÈΪ$\frac{3¦Ð}{{G{T^2}}}$ |
11£®
ÈçͼËùʾ£¬¡°ÐýתÇïǧ¡±ÖеÄÁ½¸ö×ùÒÎA¡¢BÖÊÁ¿ÏàµÈ£¬Í¨¹ýÏàͬ³¤¶ÈµÄÀÂÉþÐü¹ÒÔÚÐýתԲÅÌÉÏ£®²»¿¼ÂÇ¿ÕÆø×èÁ¦µÄÓ°Ï죬µ±ÐýתԲÅÌÈÆÊúÖ±µÄÖÐÐÄÖáÔÈËÙת¶¯ÇÒA¡¢BÎȶ¨Ê±£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | AµÄËٶȱÈBµÄ´ó | B£® | AÓëBµÄÏòÐļÓËÙ¶È´óСÏàµÈ | ||
| C£® | AÓëBµÄ½ÇËÙ¶ÈÏàµÈ | D£® | A¡¢B¾ù´¦ÓÚÆ½ºâ̬ |