题目内容
10.变式:若滑块除了受到重力之外还始终受到一个与圆周面平行的竖直向下的恒力作用,且恒力大小与重力相等,求:滑块恰好通过最高点C,滑块脱离半圆形轨道后落地点距A点的距离.
分析 由牛顿第三定律求得滑块在C点受到的支持力,然后由牛顿第二定律求得在C点的速度,即可由平抛运动规律求得AB长度;
变式:由牛顿第二定律求得在C点的速度,然后由平抛运动规律求得水平位移,即可求得距离.
解答 解:滑块通过轨道最高点C时对轨道作用力大小等于3倍的重力,故由牛顿第三定律可知:滑块在C点受到的支持力FN=3mg,方向竖直向下;
那么对滑块在C点应用牛顿第二定律可得:${F}_{N}+mg=4mg=\frac{m{{v}_{C}}^{2}}{R}$,所以,${v}_{C}=2\sqrt{gR}$;
滑块从C到A做平抛运动,故有:$2R=\frac{1}{2}g{t}^{2}$,${L}_{AB}={v}_{C}t=2\sqrt{gR}•2\sqrt{\frac{R}{g}}=4R$;
变式:滑块恰好通过最高点C,故由牛顿第二定律可得:$mg+mg=\frac{m{v}_{C}{′}^{2}}{R}$,所以,${v}_{C}′=\sqrt{2gR}$;
滑块做平抛运动的水平位移$x={v}_{C}′t=\sqrt{2gR}•2\sqrt{\frac{R}{g}}=2\sqrt{2}R$,所以,滑块脱离半圆形轨道后落地点距A点的距离为$4R-2\sqrt{2}R$;
答:AB段长度为4R;
变式:滑块恰好通过最高点C,滑块脱离半圆形轨道后落地点距A点的距离为$4R-2\sqrt{2}R$.
点评 经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.
练习册系列答案
相关题目
4.下面对图象表述正确的是( )

| A. | 0-10s内空降兵运动的加速度越来越大 | |
| B. | 0-10s内空降兵和降落伞整体所受重力大于空气阻力 | |
| C. | 10s-15s内空降兵和降落伞整体所受的空气阻力越来越小 | |
| D. | 10s-15s内空降兵处于失重状态 |
5.光滑水平面上的物体在外力F作用下的v-t图象如图所示,下列说法正确的是( )

| A. | 物体沿x方向做加速度时刻变化的变速直线运动 | |
| B. | 在t1-t3时间内,物体的加速度先减小后增大 | |
| C. | 在t3时刻,力F的功率为零 | |
| D. | 在t1-t3、t2-t4两段时间内,外力F做的总功相等 |
2.
如图甲所示,以斜面底端为重力势能零势能面,一物体在平行于斜面的拉力作用下,由静止 开始沿光滑斜面向下运动.运动过程中物体的机械能与物体位移关系的图象( E-s 图象)如图 乙所示,其中 0~s1 过程的图线为曲线,s1~s2 过程的图线为直线.根据该图象,下列判断正确 的是( )
| A. | 0~s1 过程中物体所受拉力可能沿斜面向下 | |
| B. | 0~s2过程中物体的动能可能先增大后减小 | |
| C. | s1~s2 过程中物体可能做匀加速直线运动 | |
| D. | s1~s2 过程中物体可能做匀减速直线运动 |
19.
如图为真空中两点电荷A、B形成的电场中的一簇电场线,已知该电场线关于虚线对称,O点为A、B电荷连线的中点,a、b为其连线的中垂线上对称的两点,面对上述信息,下列说法正确的是( )
| A. | A、B所带电荷量与元电荷的比值可以是不相同的整数 | |
| B. | 最先用电场线描述电场的科学家是库仑 | |
| C. | a、b两点处无电场线,故其电场强度一定为零 | |
| D. | 同一试探电荷在a、b两点处的电势能一定相同 |
20.
物块在水平桌面上受到水平恒定拉力作用下由静止开始加速运动,经过一段时间后撤去拉力,物块又滑行一段距离停下来.如果以物块的初始位置为坐标原点,沿运动方向建立x轴,则物块的动能Ek随位置坐标x的变化图象如图所示.重力加速度为已知量,根据图象可以求出下面哪些量( )
| A. | 物块的质量 | |
| B. | 物块与桌面之间的动摩擦因数 | |
| C. | 水平拉力大小 | |
| D. | 物块在前0~2m和后2m~4m内的加速度 |