ÌâÄ¿ÄÚÈÝ
10£®·ÖÎö ÏȶÔPQ»·ÊÜÁ¦·ÖÎö£¬ËüÃÇÖ»ÊÜÁ½¸öÁ¦£¬¸ù¾Ý¶þÁ¦Æ½ºâÌõ¼þ¿ÉÖª£¬Éþ×ÓµÄÀÁ¦¶¼ÊÇ´¹Ö±ÓÚ¸Ë×ӵģ¬ÕâÊǽâ¾ö´ËÌâµÄ¹Ø¼ü£®ÔÙ¶Ô½áµãOÊÜÁ¦·ÖÎö£¬ÔÙ¸ù¾ÝÈýÁ¦Æ½ºâÅжÏF1=F2£®
½â´ð
½â£º¶ÔP¡¢QС»··ÖÎö£¬Ð¡»·Êܹ⻬¸ËµÄÖ§³ÖÁ¦ºÍÉþ×ÓµÄÀÁ¦£¬¸ù¾ÝƽºâÌõ¼þ£¬ÕâÁ½¸öÁ¦ÊÇÒ»¶ÔƽºâÁ¦£¬Ö§³ÖÁ¦ÊÇ´¹Ö±ÓÚ¸Ë×ÓÏòÉϵ쬹ÊÉþ×ÓµÄÀÁ¦Ò²ÊÇ´¹Ö±ÓÚ¸Ë×ӵģ®
¶Ô½áµãOÊÜÁ¦·ÖÎöÈçͼËùʾ£®
¸ù¾ÝƽºâÌõ¼þ¿ÉÖª£¬FPºÍFQµÄºÏÁ¦ÓëFTµÈÖµ·´Ïò£®
¼¸ºÎ¹ØÏµ¿ÉÖª£¬¦Á=¦Â£®¹ÊFP=FQ£®
¼´F1£ºF2=1£º1£®
´ð£ºÁ½ÉþÊܵ½µÄÀÁ¦Ö®±ÈF1£ºF2µÈÓÚ1£º1£®
µãÆÀ ±¾ÌâÖ÷ÒªÊÇ¿¼²éÁ˹²µãÁ¦µÄƽºâÎÊÌ⣬½â´ð´ËÀàÎÊÌâµÄÒ»°ã²½ÖèÊÇ£ºÈ·¶¨Ñо¿¶ÔÏó¡¢½øÐÐÊÜÁ¦·ÖÎö¡¢ÀûÓÃÆ½ÐÐËıßÐη¨Ôò½øÐÐÁ¦µÄºÏ³É»òÕßÊÇÕý½»·Ö½â·¨½øÐÐÁ¦µÄ·Ö½â£¬È»ºóÔÚ×ø±êÖáÉϽ¨Á¢Æ½ºâ·½³Ì½øÐнâ´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
3£®
Ôڹ⻬ˮƽµØÃæÉÏÓо²Ö¹µÄÎïÌåAºÍB£¬Á½ÎïÌå¼äÓÐѹ½ôµÄÇáÖʵ¯»É£®AµÄÖÊÁ¿ÊÇBµÄ2±¶£®°ÑÁ¬½ÓÎïÌåµÄϸÉþ¼ô¶Ï£¬µ¯»É»Ö¸´Ô³¤Ê±£¨¡¡¡¡£©
| A£® | AÊܵ½µÄºÏÁ¦´óÓÚBÊܵ½µÄºÏÁ¦ | B£® | AµÄËÙÂÊÊÇBµÄËÙÂʵÄÒ»°ë | ||
| C£® | AµÄ¼ÓËÙ¶È´óÓÚBµÄ¼ÓËÙ¶È | D£® | AµÄ¶¯Á¿ÊÇBµÄ¶¯Á¿µÄÁ½±¶ |
5£®
ÔÚ¡°Ñé֤ţ¶ÙµÚ¶þ¶¨ÂÉ¡±µÄʵÑéÖУ¬Ð¡³µPÖÃÓÚľ°åÃæÉÏ£¬Æ½ºâºÃĦ²ÁÁ¦ÒÔºó£¬ÓÃϸÏß¿ç¹ýÖÊÁ¿²»¼ÆµÄ¹â»¬¶¨»¬ÂÖÁ´½ÓÒ»¸öÖØÁ¦G=8NµÄÖØÎïQ£¬Ð¡³µPÏò×óÔ˶¯µÄ¼ÓËÙ¶ÈΪa1£»ÈôϸÏß϶˲»¹ÒÖØÎ¶øÓÃF=8NµÄÁ¦ÊúÖ±ÏòÏÂÀϸÏß϶ˣ¬ÕâʱС³µPµÄ¼ÓËÙ¶ÈΪa2£¬Ôò£¨¡¡¡¡£©
| A£® | a1£¼a2 | B£® | a1=a2 | ||
| C£® | a1£¾a2 | D£® | Ìõ¼þ²»×㣬ÎÞ·¨ÅÐ¶Ï |
15£®
ÈçͼËùʾ£¬ÈƹýÔ²ÐĵÄÊúÖ±Öáת¶¯µÄˮƽԲ̨ÉÏ·ÅÓпÉÊÓΪÖʵãµÄÎï¿é£¬OΪתÖáÓëԲ̨µÄ½»µã£¬ÔÚԲ̨ת¶¯¹ý³ÌÖУ¬Îï¿éÏà¶ÔԲ̨¾²Ö¹£®ÒÑÖªÎï¿éÓëԲ̨¼äµÄ×î´ó¾²Ä¦²ÁÁ¦µÈÓÚ»¬¶¯Ä¦²ÁÁ¦£¬ÔòÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | Îï¿éÏà¶ÔԲ̨µÄÔ˶¯Ç÷ÊÆ·½ÏòÖ¸ÏòÔ²ÐÄ | |
| B£® | Èô²»¶ÏÔö´óԲ̨ת¶¯µÄ½ÇËÙ¶È£¬ÔòÎï¿é½«»áÍÑÀëÔ²¹ìµÀ×öÖ±ÏßÔ˶¯ | |
| C£® | ÈôԲ̨ÉÏ·ÅÓвÄÖÊÏàͬµÄÁ½Îï¿é£¬ÇÒԲ̨ת¶¯µÄ½ÇËٶȲ»¶ÏÔö´ó£¬Ôò¾àOµã½ÏÔ¶µÄÎï¿éÏÈ»¬¶¯ | |
| D£® | ÈôԲ̨ÉÏ·ÅÓÐÓëOµãµÈ¼ä¾àÁ½Îï¿é£¬ÇÒԲ̨ת¶¯µÄ½ÇËٶȲ»¶ÏÔö´ó£¬ÔòÓëԲ̨¼ä¶¯Ä¦²ÁÒòÊý½ÏСµÄÎï¿éÏÈ»¬¶¯ |
2£®ÉèÏë̽²â»ðÐÇʱ£¬ÔØ×ŵǽ²ÕµÄ̽²â·É´¬ÔÚÒÔ»ðÐÇÖÐÐÄΪԲÐÄ£¬°ë¾¶Îªr1µÄÔ²¹ìµÀÉÏÔ˶¯£¬ÖÜÆÚΪT1£¬µÇ½²ÕºÍ̽²â·É´¬µÄ×ÜÖÊÁ¿Îªm1£®ËæºóµÇ½²ÕÍÑÀë·É´¬£¬±ä¹ìµ½ÀëÐÇÇò¸ü½üµÄ°ë¾¶Îªr2µÄÔ²¹ìµÀÉÏÔ˶¯£¬´ËʱµÇ½²ÕµÄÖÊÁ¿Îªm2Ôò£¨¡¡¡¡£©
| A£® | »ðÐǵÄÖÊÁ¿Îª$M=\frac{{4{¦Ð^2}r_1^3}}{GT_1^2}$ | |
| B£® | »ðÐDZíÃæµÄÖØÁ¦¼ÓËÙ¶ÈΪ$g'=\frac{{4{¦Ð^2}{r_1}}}{T_1^2}$ | |
| C£® | µÇ½²ÕÔÚr1Óër2¹ìµÀÉÏÔ˶¯Ê±µÄËÙ¶È´óС֮±ÈΪ$\frac{v_1}{v_2}=\sqrt{\frac{{{m_1}{r_2}}}{{{m_2}{r_1}}}}$ | |
| D£® | µÇ½²ÕÔڰ뾶Ϊr2¹ìµÀÉÏ×öÔ²ÖÜÔ˶¯µÄÖÜÆÚΪ${T_2}=\frac{{r_2^{\;}}}{{r_1^{\;}}}{T_1}$ |
20£®
ÈçͼËùʾ£¬Ò»ÏßȦÔÚÔÈÇ¿´Å³¡ÖÐÔÈËÙת¶¯£¬µ±ÏßÈ¦Æ½Ãæ×ª¶¯ÖÁÓë´Å³¡·½ÏòƽÐÐλÖÃʱ£¨¡¡¡¡£©
| A£® | ´©¹ýÏßȦµÄ´ÅͨÁ¿×îС£¬´ÅͨÁ¿µÄ±ä»¯ÂÊ×î´ó | |
| B£® | ´©¹ýÏßȦµÄ´ÅͨÁ¿×î´ó£¬´ÅͨÁ¿µÄ±ä»¯ÂÊ×î´ó | |
| C£® | ´©¹ýÏßȦµÄ´ÅͨÁ¿×îС£¬´ÅͨÁ¿µÄ±ä»¯ÂÊ×îС | |
| D£® | ´©¹ýÏßȦµÄ´ÅͨÁ¿×î´ó£¬´ÅͨÁ¿µÄ±ä»¯ÂÊ×îС |