ÌâÄ¿ÄÚÈÝ
10£®£¨1£©µ¼Ìå¸Ë×Ô¿ªÊ¼ÏòÏÂÔ˶¯µ½Ï½µh¸ß¶ÈµÄ¹ý³ÌÖÐͨ¹ý¸ËµÄµçºÉÁ¿£®
£¨2£©µ¼Ìå¸ËϽµh¸ß¶ÈʱËùÊÜÀÁ¦FµÄ´óС¼°µ¼Ìå¸Ë×Ô¿ªÊ¼ÏòÏÂÔ˶¯µ½Ï½µh¸ß¶ÈµÄ¹ý³ÌÖÐÀÁ¦Ëù×öµÄ¹¦£®
·ÖÎö £¨1£©¸ù¾Ý·¨ÀµÚµç´Å¸ÐÓ¦¶¨ÂÉÁÐʽÇó½âƽ¾ù¸ÐÓ¦µç¶¯ÊÆ£¬¸ù¾ÝÅ·Ä·¶¨ÂÉÇó½âƽ¾ùµçÁ÷£¬¸ù¾ÝµçÁ÷µÄ¶¨ÒåÇó½âµçÁ¿£»
£¨2£©¸ù¾ÝÔ˶¯Ñ§¹«Ê½Çó½âÄ©ËÙ¶È£¬ÊÜÁ¦·ÖÎöºó¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÁÐʽÇó½âÀÁ¦£¬¸ù¾Ý¹¦ÄܹØÏµÁÐʽÇó½âÀÁ¦µÄ¹¦£®
½â´ð ½â£º£¨1£©Ï½µh¹ý³ÌÖУ¬Æ½¾ù¸ÐÓ¦µç¶¯ÊÆÎª£º
$\overline{E}$=$\frac{¡÷¦µ}{¡÷t}$
µçÁ÷£º
$\overline{I}$=$\frac{\overline{E}}{R}$
¹ÊµçÁ¿£º
q=$\overline{I}•¡÷t$=$\frac{¡÷¦µ}{R}$=$\frac{BLh}{R}$
£¨2£©¸ù¾ÝËÙ¶ÈÎ»ÒÆ¹«Ê½£¬Ï½µhʱµÄËÙ¶È£º
v=$\sqrt{2ah}$=$\sqrt{3gh}$
°²ÅàÁ¦£º
FA=BIL
¸ÐÓ¦µçÁ÷£º
I=$\frac{BLv}{R}$
¹ÊFA=$\frac{{B}^{2}{L}^{2}v}{R}$
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬ÓУº
F+mg-$\frac{{B}^{2}{L}^{2}v}{R}$=ma
ÆäÖУºa=1.5g
½âµÃ£º
F=$\frac{{B}^{2}{L}^{2}\sqrt{3gh}}{R}$+$\frac{1}{2}$mg
ϽµhʱµÄ¹ý³ÌÖУ¬¿Ë·þ°²ÅàÁ¦×ö¹¦µÈÓÚ²úÉúµÄµçÄÜ£¬µçÄÜת»¯ÎªÏµÍ³ÄÚÄÜ£¬¹Ê¸ù¾Ý¹¦ÄܹØÏµ£¬ÓУº
WF+mgh-Q=$\frac{1}{2}$mv2
½âµÃ£º
WF=$\frac{1}{2}$mgh+Q
¼´Ï½µhʱʱÀÁ¦Îª$\frac{{B}^{2}{L}^{2}\sqrt{3gh}}{R}$+$\frac{1}{2}$mg£¬¸Ã¹ý³ÌÀÁ¦µÄ¹¦Îª$\frac{1}{2}$mgh+Q£®
´ð£º£¨1£©µ¼Ìå¸Ë×Ô¿ªÊ¼ÏòÏÂÔ˶¯µ½Ï½µh¸ß¶ÈµÄ¹ý³ÌÖÐͨ¹ý¸ËµÄµçºÉÁ¿Îª$\frac{BLh}{R}$£»
£¨2£©Ï½µhʱʱÀÁ¦Îª$\frac{{B}^{2}{L}^{2}\sqrt{3gh}}{R}$+$\frac{1}{2}$mg£¬¸Ã¹ý³ÌÀÁ¦µÄ¹¦Îª$\frac{1}{2}$mgh+Q£®
µãÆÀ ±¾Ìâ¹Ø¼üÊÇÃ÷È·¸ËµÄÊÜÁ¦Çé¿ö¡¢Ô˶¯Çé¿ö¡¢ÄÜÁ¿×ª»¯Çé¿ö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ¡¢Ô˶¯Ñ§¹«Ê½¡¢¹¦ÄܹØÏµºÍ°²ÅàÁ¦¹«Ê½ÁÐʽÇó½â£¬²»ÄÑ£®
| A£® | ËٶȺͼÓËÙ¶ÈÒ»Ö±¼õС | |
| B£® | ËÙ¶ÈÏÈÔö´óºó¼õС£¬¼ÓËÙ¶ÈÒ»Ö±¼õС | |
| C£® | ËÙ¶ÈÏÈÔö´óºó¼õС£¬¼ÓËÙ¶ÈÏȼõСºóÔö´ó | |
| D£® | ËÙ¶ÈÒ»Ö±¼õС£¬¼ÓËÙ¶ÈÏȼõСºóÔö´ó |
| A£® | ÔÈËÙÖ±ÏßÔ˶¯µÄËÙʸ¶Ë¼£ÊÇÒ»¸öµã | B£® | ÔȼÓËÙÖ±ÏßÔ˶¯µÄËÙʸ¶Ë¼£ÊÇÉäÏß | ||
| C£® | ƽÅ×Ô˶¯µÄËÙʸ¶Ë¼£ÊÇÅ×ÎïÏß | D£® | ÔÈËÙÔ²ÖÜÔ˶¯µÄËÙʸ¶Ë¼£ÊÇÔ² |
| A£® | cµãµÄºÏ³¡Ç¿·½ÏòÒ»¶¨ÑØÁ¬Ïß·½ÏòÖ¸Ïò×ó²à | |
| B£® | Èô½«Õý¼ìÑéµçºÉq´ÓaÒÆÏòb£¬ËüµÄµçÊÆÄܽ«Ôö¼Ó | |
| C£® | Èô½«Õý¼ìÑéµçºÉq·ÅÓÚbµã£¬ËüËùÊܵ糡Á¦ºÍ¾ßÓеĵçÊÆÄÜÒ»¶¨¾ùΪÁã | |
| D£® | Á½¹Ì¶¨µãµçºÉµÄµçÁ¿¹ØÏµÒ»¶¨ÊÇQ1£¼Q2 |