ÌâÄ¿ÄÚÈÝ
18£®£¨1£©ÇóÔÚС»··ÉÆð¹ý³ÌÖУ¬µ××ù¶ÔË®Æ½ÃæµÄѹÁ¦´óС£»
£¨2£©ÇóС»·Ï½µ¹ý³ÌÐèÒªµÄʱ¼ä£»
£¨3£©ÈôС»·ÒÔijһ³õËÙ¶ÈÏòÉÏ·ÉÆðʱ£¬¸ÕºÃÄÜ´ïµ½¸Ë¶¥¶øÃ»ÓÐÍÑÀëÖ±Á¢¸Ë£¬ÇóС»··ÉÆðʱµÄ³õËÙ¶È´óС£®
·ÖÎö £¨1£©¸ù¾ÝËÙ¶ÈÎ»ÒÆ¹«Ê½Çó³öС»·ÏòÉÏ»¬¶¯µÄ¼ÓËÙ¶È´óС£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö¸ËºÍ»·Ö®¼äµÄĦ²ÁÁ¦£¬ÔÙ¶Ôµ××ù·ÖÎö£¬¸ù¾Ý¹²µãÁ¦Æ½ºâÇó³öÖ§³ÖÁ¦µÄ´óС£¬´Ó¶øµÃ³öµ××ù¶ÔË®Æ½ÃæµÄѹÁ¦´óС£®
£¨2£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öС»·Ï»¬µÄ¼ÓËÙ¶È´óС£¬½áºÏÎ»ÒÆÊ±¼ä¹«Ê½Çó³öϽµµÄʱ¼ä£®
£¨3£©¸ù¾ÝËÙ¶ÈÎ»ÒÆ¹«Ê½Çó³öС»··ÉÆðʱµÄ³õËÙ¶È£®
½â´ð ½â£º£¨1£©Ð¡»··ÉÆðµÄ¹ý³ÌÖУ¬¶ÔС»··ÖÎö£¬ÏòÉÏÔ˶¯µÄ¼ÓËÙ¶È´óСΪ£º
${a}_{1}=\frac{{{v}_{0}}^{2}}{2¡Á\frac{L}{2}}=\frac{16}{1}m/{s}^{2}=16m/{s}^{2}$£¬
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãºmg+f=ma1£¬
½âµÃ£ºf=ma1-mg=0.1¡Á£¨16-10£©N=0.6N£®
¶Ôµ××ù·ÖÎö£¬¸ù¾ÝƽºâÓУºN+f=Mg£¬
½âµÃ£ºN=Mg-f=10-0.6N=9.4N£®
£¨2£©Ð¡»·Ï½µ¹ý³ÌÖеļÓËÙ¶È´óСΪ£º
${a}_{2}=\frac{mg-f}{m}=\frac{1-0.6}{0.1}m/{s}^{2}=4m/{s}^{2}$£¬
¸ù¾Ý$\frac{L}{2}=\frac{1}{2}{a}_{2}{t}^{2}$µÃ£ºt=$\sqrt{\frac{L}{{a}_{2}}}=\sqrt{\frac{1}{4}}s=0.5s$£®
£¨3£©¸ù¾Ý${v}_{0}{¡ä}^{2}=2{a}_{1}L$µÃ£º${v}_{0}¡ä=\sqrt{2{a}_{1}L}=\sqrt{2¡Á16¡Á1}m/s=4\sqrt{2}m/s$£®
´ð£º£¨1£©µ××ù¶ÔË®Æ½ÃæµÄѹÁ¦´óСΪ9.4N£»
£¨2£©Ð¡»·Ï½µ¹ý³ÌÐèÒªµÄʱ¼äΪ0.5s£»
£¨3£©Ð¡»··ÉÆðʱµÄ³õËÙ¶È´óСΪ$4\sqrt{2}$m/s£®
µãÆÀ ±¾Ì⿼²éÁËÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½µÄ×ÛºÏÔËÓ㬹ؼüÁé»îµØÑ¡ÔñÑо¿¶ÔÏ󣬽áºÏÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½½øÐÐÇó½â£¬±¾Ìâ¸ôÀë¶ÔС»··ÖÎö£¬Çó³öĦ²ÁÁ¦Êǹؼü£®
| A£® | mgh+$\frac{1}{2}$mv${\;}_{0}^{2}$ | B£® | mg£¨H+h£© | C£® | mg£¨H+h£©+$\frac{1}{2}$mv${\;}_{0}^{2}$ | D£® | mgH+$\frac{1}{2}$mv${\;}_{0}^{2}$ |
| A£® | Á£×ÓA´øÕýµç£¬B²»´øµç£¬C´ø¸ºµç | |
| B£® | Èý¸öÁ£×ÓÔڵ糡ÖÐÔ˶¯Ê±¼äÏàµÈ | |
| C£® | Èý¸öÁ£×ÓÔڵ糡ÖÐÔ˶¯µÄ¼ÓËÙ¶ÈaA£¼aB£¼aC | |
| D£® | Èý¸öÁ£×Óµ½´ï¼«°åʱµÄ¶¯ÄÜEKA£¼EKB£¼EKC |
| A£® | µ¯ÐÔÊÆÄÜÓëÎïÌåµÄÐαäÁ¿ÓÐ¹Ø | |
| B£® | µ¯ÐÔÊÆÄÜÓëÎïÌåµÄÐαäÁ¿ÎÞ¹Ø | |
| C£® | ÎïÌåÔ˶¯µÄËÙ¶ÈÔ½´ó£¬µ¯ÐÔÊÆÄÜÔ½´ó | |
| D£® | µ¯ÐÔÊÆÄÜÓëÎïÌåµÄËÙ¶ÈÎÞ¹Ø |
| A£® | A2¡¢A3µÄ¶ÁÊý²»±ä | B£® | A1¡¢A3µÄ¶ÁÊý²»±ä | C£® | A1¡¢A3µÄ¶ÁÊýÔö´ó | D£® | ½öA1µÄ¶ÁÊýÔö´ó |
| A£® | Á½Çò¶¼¾²Ö¹ | |
| B£® | Á½Çò·´ÏòÔ˶¯£¬¶¯Á¿´óС¾ùΪ2kg•m/s | |
| C£® | Á½ÇòÏòͬһ·½ÏòÔ˶¯ | |
| D£® | Á½Çò·´ÏòÔ˶¯£¬¶¯Á¿´óС¾ùΪ1kg•m/s |