ÌâÄ¿ÄÚÈÝ
18£®ÔÚÓÃͼ¼××°ÖýøÐС°Ì½¾¿ºãÁ¦×ö¹¦Ó뻬¿é¶¯Äܱ仯µÄ¹ØÏµ¡±ÊµÑéÖУ¬Ä³Í¬Ñ§Éè¼ÆÁËÈçÏÂʵÑé²½Ö裺a£®Óõæ¿é½«³¤Ä¾°å¹Ì¶¨Óж¨»¬ÂÖµÄÒ»¶ËµæÆð£¬ÔÚÖÊÁ¿ÎªMµÄ»¬¿éÉÏϵÉÏϸÉþ£¬Ï¸ÉþµÄÁíÒ»¶Ëͨ¹ýÓй⻬תÖáµÄ¶¨»¬ÂÖ¹ÒÉϹ³Â룻
b£®·´¸´Òƶ¯µæ¿éµÄλÖ㬵÷Õû³¤Ä¾°åµÄÇã½Ç¦È£¬Ö±ÖÁÇáÍÆ»¬¿éºó£¬»¬¿éÑØ³¤Ä¾°åÏòÏÂ×öÔÈËÙÖ±ÏßÔ˶¯£»
c£®È¡ÏÂϸÉþºÍ¹³Â룬ͬʱ¼Ç¼¹³ÂëµÄÖÊÁ¿m£»
d£®±£³Ö³¤Ä¾°åµÄÇã½Ç²»±ä£»Æô¶¯´òµã¼ÆÊ±Æ÷£¬Èû¬¿éÑØ³¤Ä¾°åÏòÏÂ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬µ½´ïµ×¶Ëʱ¹Ø±ÕµçÔ´£»
e£®È¡ÏÂÖ½´ø½øÐзÖÎö£¬¼ÆËãºãÁ¦×öµÄ¹¦Ó뻬¿é¶¯Äܵı仯£¬Ì½Ñ°ËüÃǼäµÄ¹ØÏµ£®
»Ø´ðÏÂÁÐÎÊÌ⣺£¨ÖØÁ¦¼ÓËÙ¶ÈΪg£¬½á¹ûÓÃÒÑÖªºÍ²âÁ¿µÄÎïÀíÁ¿×Öĸ±íʾ£©
£¨1£©»¬¿éÔÚÔȼÓËÙÏ»¬¹ý³ÌÖУ¬ËùÊܵĺÏÁ¦´óСF=mg£»
£¨2£©ÊµÑéÖУ¬µÃµ½µÄÖ½´øÈçͼÒÒËùʾ£¬ÒÑÖª´òµã¼ÆÊ±Æ÷µÄ¹¤×÷ƵÂÊΪ£¬fÔÚÖ½´øÉÏ´ÓijһµãO¿ªÊ¼Ã¿¸ôÒ»¸öµãѡȡһ¸ö¼ÆÊýµã£¬·Ö±ð±êÓÐO¡¢A¡¢B¡¢C¡¢D¡¢E¡¢F¡¢G£¬²âµÃÏàÁÚ¼ÆÊýµã¼äµÄ¾àÀëÈçͼËùʾ£º
¢Ù´òµã¼ÆÊ±Æ÷´òÏÂAµãʱ»¬¿éµÄËÙ¶ÈvA=$\frac{£¨{s}_{1}+{s}_{2}£©f}{4}$£»
¢Úѡȡֽ´øÉÏAFÁ½µã½øÐÐÑо¿£¬Ôò´ÓAµ½F£¬»¬¿é¶¯ÄܵÄÔö¼ÓÁ¿¡÷Ek=$\frac{1}{2}M{[\frac{£¨{s}_{6}+{s}_{7}£©f}{4}]}^{2}-\frac{1}{2}M{[\frac{£¨{s}_{1}+{s}_{2}£©f}{4}]}^{2}$£»
ºÏÁ¦F×öµÄ¹¦WF=mg£¨s2+s3+s4+s5+s6£©£®ÈôÔÚÎó²îÔÊÐí·¶Î§ÄÚAEk=WF£¬Ôò¿É³õ²½È·¶¨ºãÁ¦×öµÄ¹¦µÈÓÚ»¬¿é¶¯Äܵı仯£®
·ÖÎö µ±Æ½ºâĦ²ÁÁ¦ºó£¬»¬¿éËùÊܵĺÏÁ¦Óë¹³ÂëµÄÖØÁ¦´óСÏàµÈ£®¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯Öмäʱ¿ÌµÄËٶȵÈÓÚÆ½¾ùËÙ¶ÈÇó³öAºÍFµãµÄËÙ¶È£¬½ø¶øÇó³ö³õÄ©¶¯ÄÜ£¬¸ù¾ÝW=FxÇó½âºãÁ¦×ö¹¦£®
½â´ð ½â£º£¨1£©±¾ÊµÑéµÄµÚÒ»²½ÒѾƽºâĦ²ÁÁ¦ÁË£¬¹Ê»¬¿éÔÚÔȼÓËÙÏ»¬¹ý³ÌÖÐËùÊܵĺÏÁ¦´óСµÈÓÚ¹³ÂëµÄÖØÁ¦£¬¼´F=mg£®
£¨2£©¢Ù´òµã¼ÆÊ±Æ÷µÄ¹¤×÷ƵÂÊΪf£¬ÔÚÖ½´øÉÏ´ÓijһµãO¿ªÊ¼Ã¿¸ôÒ»¸öµãѡȡһ¸ö¼ÆÊýµã£¬¹ÊÏàÁÚ¼ÆÊýµãÖ®¼äµÄʱ¼ä¼ä¸ôΪT=$\frac{2}{f}$£®
AµãµÄËٶȵÈÓÚOBµÄƽ¾ùËÙ¶È£¬¹Ê${v}_{A}=\frac{{s}_{1}+{s}_{2}}{2T}=\frac{£¨{s}_{1}+{s}_{2}£©f}{4}$£¬
¢ÚͬÀíFµÄËÙ¶ÈΪ${v}_{A}=\frac{{s}_{6}+{s}_{7}}{2T}=\frac{£¨{s}_{6}+{s}_{7}£©f}{4}$
ËùÒÔÖÊÁ¿ÎªMµÄ»¬¿é¶¯ÄܵÄÔö¼ÓÁ¿¡÷Ek=$\frac{1}{2}M{{v}_{F}}^{2}-\frac{1}{2}M{{v}_{A}}^{2}$=$\frac{1}{2}M{[\frac{£¨{s}_{6}+{s}_{7}£©f}{4}]}^{2}-\frac{1}{2}M{[\frac{£¨{s}_{1}+{s}_{2}£©f}{4}]}^{2}$
Aµ½FµÄÎ»ÒÆÎªs=s2+s3+s4+s5+s6
ËùÒÔºÏÍâÁ¦×ö¹¦ÎªWF=Fs=mg£¨s2+s3+s4+s5+s6£©
¹Ê´ð°¸Îª£º£¨1£©mg£»£¨2£©¢Ù$\frac{£¨{s}_{1}+{s}_{2}£©f}{4}$£»¢Ú$\frac{1}{2}M{[\frac{£¨{s}_{6}+{s}_{7}£©f}{4}]}^{2}-\frac{1}{2}M{[\frac{£¨{s}_{1}+{s}_{2}£©f}{4}]}^{2}$£»mg£¨s2+s3+s4+s5+s6£©
µãÆÀ Ã÷ȷʵÑéÔÀíÊǽâ´ðʵÑéµÄ¹Ø¼ü£¬È籾ʵÑéÖÐÒªÃ÷ȷΪºÎҪƽºâĦ²ÁÁ¦£¬ÒÔ¼°ÈçºÎƽºâĦ²ÁÁ¦£¬Äܹ»¸ù¾ÝÖ½´øÇó³öijµãµÄ˲ʱËÙ¶È£¬ÄѶÈÊÊÖУ®
| A£® | СÇò¾²Ö¹Ê±Ï¸ÉþµÄÀÁ¦´óСΪ$\frac{3}{5}$mg | |
| B£® | ϸÉþÉÕ¶Ï˲¼äСÇòµÄ¼ÓËÙ¶ÈÁ¢¼´±äΪg | |
| C£® | СÇò¾²Ö¹Ê±µ¯»ÉµÄµ¯Á¦´óСΪ$\frac{4}{3}$mg | |
| D£® | ϸÉþÉÕ¶Ï˲¼äСÇòµÄ¼ÓËÙ¶ÈÁ¢¼´±äΪ$\frac{3}{5}$g |
| A£® | ²¨´«²¥µÄËÙ¶È´óС | |
| B£® | ¾¹ý0.3s£¬x=8m´¦µÄÖʵãͨ¹ýµÄ·³Ì | |
| C£® | t=0.6sʱ£¬x=8m´¦µÄÖʵãµÄËÙ¶È·½Ïò | |
| D£® | t=0.8sʱµÄ²¨ÐÎͼ |
| A£® | BIL£¬Æ½ÐÐÓÚOCÏò×ó | B£® | $\frac{2\sqrt{2}BIL}{¦Ð}$£¬Æ½ÐÐÓÚOCÏòÓÒ | ||
| C£® | $\frac{2\sqrt{2}BIL}{¦Ð}$£¬´¹Ö±ACµÄÁ¬ÏßÖ¸Ïò×óÏ·½ | D£® | 2$\sqrt{2}$BIL£¬´¹Ö±ACµÄÁ¬ÏßÖ¸Ïò×óÏ·½ |
| A£® | ¼õС˫·ì¼äµÄ¾àÀ룬¸ÉÉæÌõÎÆ¼äµÄ¾àÀ뽫¼õС | |
| B£® | Ôö´óË«·ìµ½ÆÁµÄ¾àÀ룬¸ÉÉæÌõÎÆ¼äµÄ¾àÀ뽫Ôö´ó | |
| C£® | ½«Â̹⻻Ϊºì¹â£¬¸ÉÉæÌõÎÆ¼äµÄ¾àÀ뽫Ôö´ó | |
| D£® | ½«Â̹⻻Ϊ×Ϲ⣬¸ÉÉæÌõÎÆ¼äµÄ¾àÀ뽫Ôö´ó |
| A£® | µ¼µ¯ÔÚCµãµÄËÙ¶È´óÓÚ$\sqrt{\frac{GM}{R+h}}$ | B£® | µ¼µ¯ÔÚCµãµÄËٶȵÈÓÚ$\sqrt{\frac{GM}{R+h}}$ | ||
| C£® | µ¼µ¯ÔÚCµãµÄ¼ÓËٶȵÈÓÚ$\frac{GM}{£¨R+h£©^{2}}$ | D£® | µ¼µ¯ÔÚCµãµÄ¼ÓËÙ¶È´óÓÚ$\frac{GM}{£¨R+h£©^{2}}$ |
| A£® | ¹âÏßÔÚACÃæÉÏ·¢ÉúÈ«·´É䣬´ÓBCÃæÉÏÉä³öʱÓëBC´¹Ö± | |
| B£® | ¹âÏßÔÚACÃæÉÏ·¢ÉúÈ«·´É䣬´ÓBCÃæÉÏÉä³öʱÓëBC²»´¹Ö± | |
| C£® | ¹âÏßÔÚACÃæÉϲ»·¢ÉúÈ«·´É䣬´ÓBCÃæÉÏÉä³öʱÓëBC²»´¹Ö± | |
| D£® | ¹âÏßÔÚACÃæÉϲ»·¢ÉúÈ«·´É䣬´ÓBCÃæÉÏÉä³öʱÓëBC´¹Ö± |