ÌâÄ¿ÄÚÈÝ
12£®ÍòÓÐÒýÁ¦¶¨ÂɽÒʾÁËÌìÌåÔËÐйæÂÉÓëµØÉÏÎïÌåÔ˶¯¹æÂɾßÓÐÄÚÔÚµÄÒ»ÖÂÐÔ£®Óõ¯»É³Ó³ÆÁ¿Ò»¸öÏà¶ÔÓÚµØÇò¾²Ö¹µÄСÎïÌåµÄÖØÁ¿£¬Ëæ³ÆÁ¿Î»Öõı仯¿ÉÄÜ»áÓв»Í¬µÄ½á¹û£®ÒÑÖªµØÇòÖÊÁ¿ÎªM£¬×ÔתÖÜÆÚΪT£¬ÍòÓÐÒýÁ¦³£Á¿ÎªG£®½«µØÇòÊÓΪ°ë¾¶ÎªR¡¢ÖÊÁ¿¾ùÔÈ·Ö²¼µÄÇòÌ壬²»¿¼ÂÇ¿ÕÆøµÄÓ°Ï죮ÉèÔÚµØÇò±±¼«µØÃæ³ÆÁ¿Ê±£¬µ¯»É³ÓµÄ¶ÁÊýÊÇF0£®£¨1£©ÈôÔÚ±±¼«ÉϿո߳öµØÃæh´¦³ÆÁ¿£¬µ¯»É³Ó¶ÁÊýΪF1£¬Çó±ÈÖµ$\frac{{F}_{1}}{{F}_{0}}$µÄ±í´ïʽ£¬²¢¾Íh=1.0%RµÄÇéÐÎËã³ö¾ßÌåÊýÖµ£¨¼ÆËã½á¹û±£ÁôÁ½Î»ÓÐЧÊý×Ö£©£»
£¨2£©ÈôÔÚ³àµÀµØÃæ³ÆÁ¿£¬µ¯»É³Ó¶ÁÊýΪF2£¬Çó±ÈÖµ$\frac{{F}_{2}}{{F}_{0}}$µÄ±í´ïʽ£®
·ÖÎö ¸ù¾ÝÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦µÃ³ö±ÈÖµ$\frac{{F}_{1}}{{F}_{0}}$µÄ±í´ïʽ£¬²¢Çó³ö¾ßÌåµÄÊýÖµ£®
ÔÚ³àµÀ£¬ÓÉÓÚÍòÓÐÒýÁ¦µÄÒ»¸ö·ÖÁ¦µÈÓÚÖØÁ¦£¬ÁíÒ»¸ö·ÖÁ¦Ìá¹©ËæµØÇò×ÔתËùÐèµÄÏòÐÄÁ¦£¬¸ù¾Ý¸Ã¹æÂÉÇó³ö±ÈÖµ$\frac{{F}_{2}}{{F}_{0}}$µÄ±í´ïʽ
½â´ð ½â£º£¨1£©ÔÚµØÇò±±¼«µã²»¿¼ÂǵØÇò×Ôת£¬Ôò³ÓËù³ÆµÃµÄÖØÁ¦ÔòΪÆäÍòÓÐÒýÁ¦£¬ÓÚÊÇ
F0=$\frac{GMm}{{R}^{2}}$ ¢Ù
F1=$\frac{GMm}{{£¨R+h£©}^{2}}$ ¢Ú
Óɹ«Ê½¢Ù¢Ú¿ÉÒԵóö£º$\frac{{F}_{1}}{{F}_{0}}$=$\frac{{R}^{2}}{{£¨R+h£©}^{2}}$=0.98£®
£¨2£©F2=$\frac{GMm}{{R}^{2}}$-m¦Ø2R=$\frac{GMm}{{R}^{2}}$-m$\frac{{4¦Ð}^{2}}{{T}^{2}}$R ¢Û
¢ÙºÍ¢Û¿ÉµÃ£º$\frac{{F}_{2}}{{F}_{0}}$=1-$\frac{{{4¦Ð}^{2}R}^{3}}{{GMT}^{2}}$
´ð£º£¨1£©±ÈÖµ$\frac{{F}_{1}}{{F}_{0}}$µÄ±í´ïʽÊÇ$\frac{{F}_{1}}{{F}_{0}}$=$\frac{{R}^{2}}{{£¨R+h£©}^{2}}$£¬²¢¾Íh=1.0%RµÄÇéÐδóСÊÇ0.98£»
£¨2£©ÈôÔÚ³àµÀµØÃæ³ÆÁ¿£¬µ¯»É³Ó¶ÁÊýΪF2£¬±ÈÖµ$\frac{{F}_{2}}{{F}_{0}}$µÄ±í´ïʽÊÇ$\frac{{F}_{2}}{{F}_{0}}$=1-$\frac{{{4¦Ð}^{2}R}^{3}}{{GMT}^{2}}$£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÖªµÀÔÚµØÇòµÄÁ½¼«£¬ÍòÓÐÒýÁ¦µÈÓÚÖØÁ¦£¬ÔÚ³àµÀ£¬ÍòÓÐÒýÁ¦µÄÒ»¸ö·ÖÁ¦µÈÓÚÖØÁ¦£¬ÁíÒ»¸ö·ÖÁ¦Ìá¹©ËæµØÇò×ÔתËùÐèµÄÏòÐÄÁ¦£®
| A£® | Èô¦Ì1£¾¦Ì2£¬ÓÐa1=a2£¼a3 | B£® | Èô¦Ì1£¾¦Ì2£¬ÓÐa2£¼a1£¼a3 | ||
| C£® | Èô¦Ì1£¼¦Ì2£¬ÓÐa1=a2£¾a3 | D£® | Èô¦Ì1£¼¦Ì2£¬ÓÐa1£¾a2=a3 |
| A£® | $\frac{{T}_{2}}{\sqrt{{{T}_{2}}^{2}-{{T}_{1}}^{2}}}$ | B£® | $\frac{{T}_{2}}{{T}_{1}}$ | C£® | $\frac{{T}_{1}}{\sqrt{{{T}_{1}}^{2}-{{T}_{2}}^{2}}}$ | D£® | $\frac{{T}_{1}}{{T}_{2}}$ |
| A£® | µçÈÝÆ÷Ëù´¢´æµÄµçÄܲ»±ä | B£® | µçÈÝÆ÷Ëù´øµÄµçºÉÁ¿¼õÉÙ | ||
| C£® | µçÈÝÆ÷µÄµçÈݼõС | D£® | µçÈÝÆ÷Á½¼«°å¼äµÄµçÊÆ²î¼õС |