题目内容
9.分析 气体温度保持不变,气体发生等温变化,根据题意求出气体的状态参量,然后分别对两部分气体应用玻意耳定律列方程,然后求出气体的压强与活塞向下移动的距离.
解答 解:左边气体的状态参量:p左1=p0+h=80cmHg,V左1=12.5S,V左2=(12.5-$\frac{5}{2}$)S=10S,
由玻意耳定律得:p左1V左1=p左2V左2,即:80×12.5S=p左2×10S,解得:p左2=100cmHg;
右边气体的状态参量:p右1=p0=75cmHg,V右1=10S,p右2=p左2=100cmHg
由玻意耳定律得:p右1V右1=p右2V右2,即:75×10S=100×V右2,
解得:V右2=7.5S,右边空气柱的高度为:7.5cm;
p右2=p0+$\frac{F}{S}$,F=(p右2-p0)S=10N;
活塞向下移动的距离:d=10-7.5+$\frac{5}{2}$=5cm;
答:施加的压力为10N,活塞下移的距离是5cm.
点评 本题考查了求力的大小、活塞移动的距离问题,本题是连接体问题,分析清楚气体状态变化过程、求出气体状态参量是解题的关键,应用玻意耳定律即可解题;要掌握解连接体问题的方法,要注意两部分气体状态参量间的关系.
练习册系列答案
相关题目
19.以下说法正确的是( )
| A. | 地面附近有一高速(接近光速)水平飞过的火箭,地面上的人观察到的火箭长度要比火箭上的人观察到的短一些 | |
| B. | 两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇,波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 | |
| C. | 分别用黄光和绿光在同一装置上做双缝干涉实验,用黄光时得到条纹间距更宽 | |
| D. | 当敌机靠近时,战机携带的雷达接收到的反射波的频率小于发射频率 | |
| E. | LC振荡电路中产生随时间t按i=asinbt的规律变化的振荡电流时,发射的电磁波的波长为$\frac{2πc}{b}$(c为真空中的光速) |
17.
某同学利用如图所示的装置验证动能定理.将木板竖直放置在斜槽末端的前方某一固定位置,在木板上依次固定好白纸、复写纸.将小球从不同的标记点由静止释放,记录小球到达斜槽底端时下落的高度H,并根据落点位置测量同一小球离开斜槽后的竖位移y.改变小球在斜槽上的释放位置,进行多次测量,记录数据如下:
(1)在安装斜槽时,应注意使斜槽末端O点的切线水平;
(2)已知斜槽倾角为θ,小球与斜槽之间的动摩擦因数为μ,木板与斜槽末端的水平距离为x,小球在离开斜槽后的竖直位移为y,不计小球与水平槽之间的摩擦,小球从斜槽上滑下的过程中,若动能定理成立则应满足的关系的是H=$\frac{{x}^{2}}{4-4μ\frac{1}{tanθ}}$•$\frac{1}{y}$;
(3)若想利用图角直观得到实验结论,最好应以H为横坐标,以$\frac{1}{y}$为纵坐标,描点作图.
| 高度H(h为单位长度) | h | 2h | 3h | 4h | 5h | 6h | 7h | 8h | 9h |
| 竖直位移y/cm | 30.0 | 15.0 | 10.0 | 7.5 | 6.0 | 5.0 | 4.3 | 3.8 | 3.3 |
(2)已知斜槽倾角为θ,小球与斜槽之间的动摩擦因数为μ,木板与斜槽末端的水平距离为x,小球在离开斜槽后的竖直位移为y,不计小球与水平槽之间的摩擦,小球从斜槽上滑下的过程中,若动能定理成立则应满足的关系的是H=$\frac{{x}^{2}}{4-4μ\frac{1}{tanθ}}$•$\frac{1}{y}$;
(3)若想利用图角直观得到实验结论,最好应以H为横坐标,以$\frac{1}{y}$为纵坐标,描点作图.
4.
如图所示,由光滑弹性绝缘壁构成的等边三角形ABC容器的边长为a,其内存在垂直纸面向外的匀强磁场,小孔O是竖直边AB的中点,一质量为为m、电荷量为+q的粒子(不计重力)从小孔O以速度v水平射入磁场,粒子与器壁多次垂直碰撞后(碰撞时无能量和电荷量损失)仍能从O孔水平射出,已知粒子在磁场中运行的半径小于$\frac{a}{2}$,则磁场的磁感应强度的最小值Bmin及对应粒子在磁场中运行的时间t为( )
| A. | Bmin=$\frac{2m{v}_{0}}{qa}$,t=$\frac{7πa}{6v}$ | B. | Bmin=$\frac{2m{v}_{0}}{qa}$,t=$\frac{πa}{26v}$ | ||
| C. | Bmin=$\frac{6m{v}_{0}}{qa}$,t=$\frac{7πa}{6v}$ | D. | Bmin=$\frac{6m{v}_{0}}{qa}$,t=$\frac{πa}{26v}$ |
14.如图甲所示,质量m=1kg的物体置于倾角θ=37°的固定粗糙斜面上,t=0时对物体施加平行斜面向上的拉力F,t=1s时撤去拉力F,物体运动的部分v-t图如图乙所示.已知斜面足够长,g取10m/s2,下列说法正确的是( )

| A. | 拉力F的大小为20N | B. | t=1s时物体的机械能最大 | ||
| C. | 物体与斜面间的动摩擦因数为0.4 | D. | t=4s时物体的速度大小为10m/s |
18.
德国物理学家弗兰克林和赫兹进行过气体原子激发的实验研究.如图(1)他们在一只阴极射线管中充了要考察的汞蒸气.阴极发射出的电子受阴极K和栅极R之间的电压UR加速,电子到达栅极R时,电场做功eUR.此后电子通过栅极R和阳极A之间的减速电压UA.通过阳极的电流如图(2)所示,随着加速电压增大,阳极电流在短时间内也增大.但是到达一个特定的电压值UR后.观察到电流突然减小.在这个电压值上,电子的能量刚好能够激发和它们碰撞的原子.参加碰撞的电子交出其能量,速度减小,因此到达不了阳极,阳极电流减小.eUR即为基态气体原子的激发能.得到汞原子的各个能级比基态高以下能量值:4.88eV,6.68eV,8.78eV,10.32eV(此为汞原子的电离能).若一个能量为7.97eV电子进入汞蒸气后测量它的能量可能是( )
| A. | 4.88eV或7.97eV | B. | 4.88eV或6.68eV | ||
| C. | 2.35eV或7.97eV | D. | 1.29eV或3.09eV或7.97eV |