ÌâÄ¿ÄÚÈÝ
15£®¢ÙÈç¹ûƤ´øÂÖÄæÊ±Õëת¶¯£¬ÇÒÏßËÙ¶ÈΪ2m/s
¢ÚÈç¹ûƤ´øÂÖ˳ʱÕëת¶¯£¬ÇÒÏßËÙ¶ÈΪ2m/s
¢Ûµ±Æ¤´øÂÖ˳ʱÕëת¶¯£¬Æ¤´øµÄÏßËÙ¶ÈΪ6m/s
¢Üµ±Æ¤´øÂÖ˳ʱÕëת¶¯£¬Æ¤´øµÄÏßËÙ¶ÈΪ9m/s
¢Ýµ±Æ¤´øÂÖ˳ʱÕëת¶¯£¬Æ¤´øµÄÏßËÙ¶ÈΪ12m/s£®
·ÖÎö ¶ÔÎïÌå½øÐзÖÎö£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÇóµÃÎïÌåÔ˶¯µÄ¼ÓËÙ¶È£¬·Ö¸÷ÖÖÇé¿öÌÖÂÛÎïÌåÔÚ´«ËÍ´øÉϵÄÔ˶¯Çé¿ö£¬ÔÙÓÉÔ˶¯Ñ§¹«Ê½¿ÉÇóµÃ¸÷ÖÖÇé¿öϵÄÔ˶¯µÄʱ¼äºÍËÙ¶È£®
½â´ð ½â£ºÈô´«ËÍ´ø²»¶¯£¬ÔòÎïÌå×öÔȼõËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵ㺼ÓËÙ¶È´óСΪ£º$a=\frac{¦Ìmg}{m}=2m/{s}^{2}$£¬¸ù¾Ýx=${v}_{0}t-\frac{1}{2}a{t}^{2}$½âµÃ£ºt=2s£¬À뿪ʱµÄËÙ¶ÈΪ£ºv=v0-at=8-2¡Á2=4m/s£¬
¢ÙÈç¹ûƤ´øÂÖÄæÊ±Õëת¶¯£¬ÔòÎïÌåÈÔ×öÔȼõËÙÖ±ÏßÔ˶¯À뿪´«ËÍ´ø£¬ÔòÔ˶¯µÄʱ¼ät1=t=2s£¬À뿪ʱµÄËÙ¶Èv1=4m/s
¢ÚÈôÎïÌåÒ»Ö±ÔȼõËÙÔ˶¯µ½Bµã£¬Ôòµ½´ïBµãËÙ¶Èv=4m/s£¬
Èç¹ûƤ´øÂÖ˳ʱÕëת¶¯£¬ÇÒÏßËÙ¶ÈΪ2m/s£¼4m/s£¬ÔòÎïÌåÈÔ×öÔȼõËÙÖ±ÏßÔ˶¯À뿪´«ËÍ´ø£¬ÔòÔ˶¯µÄʱ¼ät2=t=2s£¬À뿪ʱµÄËÙ¶ÈΪv2=4m/s
¢Ûµ±Æ¤´øÂÖ˳ʱÕëת¶¯£¬Æ¤´øµÄÏßËÙ¶ÈΪ6m/s£¾4m/s£¬Ôò´«ËÍ´øÏÈ×öÔȼõËÙÖ±ÏßÔ˶¯£¬ËÙ¶ÈÓë´«ËÍ´øËÙ¶ÈÏàµÈʱ£¬Ò»Æð×öÔÈËÙÖ±ÏßÔ˶¯£¬
Éè¾¹ýʱ¼ät¡äÁ½ÕßËÙ¶ÈÏàµÈ£¬ÔòÓУº$t¡ä=\frac{¡÷v}{a}=\frac{8-6}{2}=1s$£¬´Ë¹ý³ÌÖÐÎïÌåµÄÎ»ÒÆ${x}_{1}={v}_{0}t¡ä-\frac{1}{2}at{¡ä}^{2}=8¡Á1-\frac{1}{2}¡Á2¡Á1=7m$£¬ÔòÔÈËÙÔ˶¯µÄʱ¼ä${t}_{3}=\frac{x-{x}_{1}}{v}=\frac{12-7}{6}=0.83s$£¬
Ôò×Üʱ¼ät4=t¡ä+t3=1.83s£¬À뿪ʱµÄËÙ¶Èv3=6m/s£¬
¢Üµ±Æ¤´øÂÖ˳ʱÕëת¶¯£¬Æ¤´øµÄÏßËÙ¶ÈΪ9m/s£¾8m/s£¬ÔòÎïÌåÏÈ×öÔȼÓËÙÔ˶¯£¬ËÙ¶ÈÓë´«ËÍ´øËÙ¶ÈÏàµÈʱ£¬Ò»Æð×öÔÈËÙÖ±ÏßÔ˶¯£¬
ÔȼÓËÙÔ˶¯µÄʱ¼ä${t}_{5}=\frac{¡÷v}{a}=\frac{9-8}{2}=0.5s$£¬´Ë¹ý³ÌÖеÄÎ»ÒÆ${x}_{2}={v}_{0}{t}_{5}+\frac{1}{2}a{{t}_{5}}^{2}$=$8¡Á0.5-\frac{1}{2}¡Á2¡Á0.25=3.75m$£¬ÔòÔÈËÙÔ˶¯µÄʱ¼ä${t}_{6}=\frac{x-{x}_{2}}{v}=\frac{12-3.75}{9}=0.92s$£¬
Ôò×Üʱ¼ät7=t5+t6=1.42s£¬À뿪ʱµÄËÙ¶Èv4=9m/s£¬
¢ÝÈô»¬¿éÒ»Ö±×öÔȼÓËÙÖ±ÏßÔ˶¯À뿪´«ËÍ´ø£¬ÔòÀ뿪´«ËÍ´øµÄËÙ¶È$v¡ä=\sqrt{{{v}_{0}}^{2}+2ax}=\sqrt{64+2¡Á2¡Á12}=\sqrt{112}m/s$
µ±Æ¤´øÂÖ˳ʱÕëת¶¯£¬Æ¤´øµÄÏßËÙ¶ÈΪ12m/s£¾$\sqrt{112}m/s$£¬ËùÒÔÎïÌåÒ»Ö±×öÔȼÓËÙÖ±ÏßÔ˶¯£¬ÔòÓÐ$x={v}_{0}{t}_{8}+\frac{1}{2}a{{t}_{8}}^{2}$
½âµÃ£º${t}_{8}=\frac{\sqrt{112}-8}{2}s$
´ð£ºµ±Æ¤´ø¾²Ö¹²»¶¯Ê±£¬À뿪Ƥ´øµÄËÙ¶ÈΪ4m/s£¬ÔÚÆ¤´øÉϵϬÐÐʱ¼äΪ2s£»
¢ÙÈç¹ûƤ´øÂÖÄæÊ±Õëת¶¯£¬ÇÒÏßËÙ¶ÈΪ2m/s£¬À뿪Ƥ´øµÄËÙ¶ÈΪ4m/s£¬ÔÚÆ¤´øÉϵϬÐÐʱ¼äΪ2s£»
¢ÚÈç¹ûƤ´øÂÖ˳ʱÕëת¶¯£¬ÇÒÏßËÙ¶ÈΪ2m/s£¬À뿪Ƥ´øµÄËÙ¶ÈΪ4m/s£¬ÔÚÆ¤´øÉϵϬÐÐʱ¼äΪ2s£»
¢Ûµ±Æ¤´øÂÖ˳ʱÕëת¶¯£¬Æ¤´øµÄÏßËÙ¶ÈΪ6m/s£¬À뿪Ƥ´øµÄËÙ¶ÈΪ6m/s£¬ÔÚÆ¤´øÉϵϬÐÐʱ¼äΪ0.83s£»
¢Üµ±Æ¤´øÂÖ˳ʱÕëת¶¯£¬Æ¤´øµÄÏßËÙ¶ÈΪ9m/s£¬À뿪Ƥ´øµÄËÙ¶ÈΪ9m/s£¬ÔÚÆ¤´øÉϵϬÐÐʱ¼äΪ0.92s£»
¢Ýµ±Æ¤´øÂÖ˳ʱÕëת¶¯£¬Æ¤´øµÄÏßËÙ¶ÈΪ12m/s£¬À뿪Ƥ´øµÄËÙ¶ÈΪ$\sqrt{112}m/s$m/s£¬ÔÚÆ¤´øÉϵϬÐÐʱ¼äΪ$\frac{\sqrt{112}-8}{2}s$£®
µãÆÀ ±¾ÌâΪÎïÌåÔÚ´«ËÍ´øÉÏÔ˶¯µÄ¹ý³Ì·ÖÎö£¬Òª×¢ÒâÃ÷È·ÎïÌåµÄÔ˶¯¹ý³Ì£¬ÓúÃÅ£¶ÙµÚ¶þ¶¨ÂÉÒÔ¼°Ô˶¯Ñ§»ù±¾¹«Ê½½øÐзÖÎö£¬ÄѶÈÊÊÖУ®
| A£® | µçÌÝÒÔ5m/sµÄËÙ¶ÈÔÈËÙÉÏÉý | B£® | µçÌÝÒÔ1m/s2µÄ¼ÓËٶȼÓËÙϽµ | ||
| C£® | µçÌÝÒÔ1m/s2µÄ¼ÓËٶȼõËÙϽµ | D£® | µçÌÝÒÔ2m/s2µÄ¼ÓËٶȼõËÙÉÏÉý |
| A£® | $\frac{2{B}^{2}{L}^{4}¦Ø}{¦ÐR}$£¬$\frac{¦ÐB{L}^{2}}{2\sqrt{2}R}$ | B£® | $\frac{2{B}^{2}{L}^{4}¦Ø}{¦ÐR}$£¬$\frac{B{L}^{2}}{R}$ | ||
| C£® | $\frac{¦Ð{B}^{2}{L}^{4}¦Ø}{4R}$£¬$\frac{¦ÐB{L}^{2}}{2\sqrt{2}R}$ | D£® | $\frac{¦Ð{B}^{2}{L}^{4}¦Ø}{4R}$£¬$\frac{B{L}^{2}}{R}$ |
ʵÑé²½Ö裺
¢Ù½«µ¯»É³Ó¹Ì¶¨ÔÚÌùÓа×Ö½µÄÊúֱľ°åÉÏ£¬Ê¹ÆäÖáÏßÑØÊúÖ±·½Ïò£®
¢ÚÈçͼ¼×Ëùʾ£¬½«»·ÐÎÏðÆ¤½îÒ»¶Ë¹ÒÔÚµ¯»É³ÓµÄ³Ó¹³ÉÏ£¬ÁíÒ»¶ËÓÃÔ²Öé±Ê¼âÊúÖ±ÏòÏÂÀ£¬Ö±µ½
µ¯»É³ÓʾÊýΪijһÉ趨ֵʱ£¬½«ÏðÆ¤½îÁ½¶ËµÄλÖüÇΪO1¡¢O2£¬¼Ç¼µ¯»É³ÓµÄʾÊýF£¬²âÁ¿²¢¼Ç¼O1¡¢O2¼äµÄ¾àÀ루¼´ÏðÆ¤½îµÄ³¤¶Èl£©£®Ã¿´Î½«µ¯»É³ÓʾÊý¸Ä±ä0.50N£¬²â³öËù¶ÔÓ¦µÄl£¬²¿·ÖÊý¾ÝÈçϱíËùʾ£º
| F£¨N£© | 0 | 0.50 | 1.00 | 1.05 | 2.00 | 2.50 |
| l £¨cm£© | l0 | 10.97 | 12.02 | 13.00 | 13.98 | 15.05 |
¢ÜÔÚ³Ó¹³ÉÏͿĨÉÙÐíÈó»¬ÓÍ£¬½«ÏðÆ¤½î´îÔÚ³Ó¹³ÉÏ£¬ÈçͼÒÒËùʾ£®ÓÃÁ½Ô²Öé±Ê¼â³ÉÊʵ±½Ç¶Èͬ
ʱÀÏðÆ¤½îµÄÁ½¶Ë£¬Ê¹³Ó¹³µÄ϶˴ﵽOµã£¬½«Á½±Ê¼âµÄλÖñê¼ÇΪA¡¢B£¬ÏðÆ¤½îOA¶ÎµÄÀÁ¦¼ÇΪFOA£¬OB¶ÎµÄÀÁ¦¼ÇΪFOB£®
Íê³ÉÏÂÁÐ×÷ͼºÍÌî¿Õ£º
£¨1£©ÀûÓñíÖÐÊý¾ÝÔÚÈçͼ±û¸ø³öµÄ×ø±êÖ½ÉÏ£¨¼û´ðÌ⿨£©»³öF-lͼÏߣ¬¸ù¾ÝͼÏßÇóµÃl0=10.00cm£®
£¨2£©²âµÃOA=6.00cm£¬OB=7.60cm£¬ÔòFOAµÄ´óСΪ1.80N£®
£¨3£©¸ù¾Ý¸ø³öµÄ±ê¶È£¬ÔÚ´ðÌ⿨ÉÏ×÷³öFOAºÍFOBµÄºÏÁ¦F'µÄͼʾ£®
£¨4£©Í¨¹ý±È½ÏF'ÓëFOO¡äµÄ´óСºÍ·½Ïò£¬¼´¿ÉµÃ³öʵÑé½áÂÛ£®
| A£® | ÎïÌåµÄÎ»ÒÆÎªÁ㣬ÔòÎïÌåÒ»¶¨²»¶¯ | |
| B£® | ÖʵãÑØ²»Í¬µÄ·¾¶ÓÉAµ½B£¬Â·³Ì¿ÉÄܲ»Í¬¶øÎ»ÒÆÒ»¶¨Ïàͬ | |
| C£® | Öʵãͨ¹ýÒ»¶Î·³Ì£¬ÆäÎ»ÒÆ¿ÉÄÜΪÁã | |
| D£® | ÖʵãÔ˶¯Î»ÒÆ¿ÉÄܵÈÓÚ·³Ì£® |