ÌâÄ¿ÄÚÈÝ
4£®¼òгÔ˶¯ÊÇÒ»ÖÖÀíÏ뻯µÄÔ˶¯Ä£ÐÍ£¬ÊÇ»úеÕñ¶¯ÖÐ×î¼òµ¥¡¢×î»ù±¾µÄÕñ¶¯£®Ëü¾ßÓÐÈçÏÂÌØµã£º1£©¼òгÔ˶¯µÄÎïÌåÊܵ½»Ø¸´Á¦µÄ×÷Ó㬻ظ´Á¦µÄ´óСÓëÎïÌ寫ÀëÆ½ºâλÖõÄÎ»ÒÆ´óС³ÉÕý±È¡¢·½ÏòÓëÎ»ÒÆ·½ÏòÏà·´£¬¼´£ºF»Ø=-kx£¬ÆäÖÐkΪÕñ¶¯ÏµÊý£¬ÆäÖµÓÉÕñ¶¯ÏµÍ³¾ö¶¨£®
2£©¼òгÔ˶¯ÊÇÒ»ÖÖÖÜÆÚÐÔÔ˶¯£¬ÆäÖÜÆÚÓëÕñ¶¯ÎïÌåµÄÖÊÁ¿µÄƽ·½¸ù³ÉÕý±È£¬ÓëÕñ¶¯ÏµÍ³µÄÕñ¶¯ÏµÊýµÄƽ·½¸ù³É·´±È£¬¶øÓëÕñ·ùÎ޹أ¬¼´£ºT=2¦Ð$\sqrt{\frac{m}{k}}$£®
£¨1£©Èçͼ1Ëùʾ£¬Ò»¹â»¬µÄˮƽ¸Ë£¬ÔÚ¸ËÉÏ´©ÓÐÁ½ÇáÖʵ¯»É£¬¾¢¶ÈϵÊý·Ö±ðΪk1¡¢k2£¬µ¯»ÉÁ½¶Ë¹Ì¶¨ÓÚÊúֱǽÉÏ£¬ÖмäϵһÖÊÁ¿ÎªmµÄ½ðÊôСÇò£¬´ËʱÁ½µ¯»É¾ù´¦ÓÚÔ³¤£¬OΪƽºâλÖã®ÏÖ½«Ð¡ÇòÑØ¸ËÀ¿ªÒ»¶Î¾àÀëºóËÉ¿ª£¬Ð¡ÇòÒÔOΪƽºâλÖÃ×ö¼òгÔ˶¯£®
a£®Ð´³öСÇòÆ«ÀëÆ½ºâλÖõÄÎ»ÒÆ´óСΪxʱºÏÍâÁ¦FºÏµÄ±í´ïʽ£»
b£®Ð´³öСÇò×ö¼òгÔ˶¯µÄÖÜÆÚT£®
£¨2£©Ò»¶¨ÖÊÁ¿µÄÀíÏëÆøÌ壬ÔÚζȱ£³Ö²»±äµÄÌõ¼þÏ£¬ÆäѹǿÓëÌå»ýµÄ³Ë»ý±£³Ö²»±ä£¬¼´£ºPV=P'V'£¨²£Òâ¶û-ÂíÂÔÌØ¶¨ÂÉ£©£®Èçͼ2Ëùʾ£¬Ò»Ãܱճ¤·½ÌåÈÝÆ÷£¬µ¼ÈÈÐÔÄÜÁ¼ºÃ£¬ÖмäÓÐÒ»ÖÊÁ¿ÎªmµÄ»îÈû£¬½«ÈÝÆ÷·Ö¸ô³ÉÌå»ýÏàµÈµÄÁ½²¿·Ö£¬ÇÒÁ½²¿·ÖÆøÌåÍêÈ«Ïàͬ£¬Õû¸öÈÝÆ÷µÄζȱ£³Ö²»±ä£®ÒÑÖªÆøÌåµÄѹǿΪP0£¬»îÈûµ½Á½¶ËµÄ¾àÀë¾ùΪL£¬»îÈûµÄºá½ØÃæ»ýΪS£¬È¡ÏòÓÒΪÕý·½Ïò£®
a£®ÏÖ½«»îÈû»ºÂýÏòÓÒÒÆµ½MλÖã¬Óɾ²Ö¹ÊÍ·Å£¬ÊÔÇó³ö»îÈûµÄÎ»ÒÆÎªxʱÁ½±ßÆøÌåµÄѹǿP1ºÍP2±ÈÖµ£»
b£®Ö¤Ã÷£ºÔÚÕñ·ùAԶСÓÚLµÄÌõ¼þÏ£¬»îÈûµÄÔ˶¯¿ÉÒÔ¿´×÷¼òгÔ˶¯£®
·ÖÎö £¨1£©a¡¢¸ù¾Ýºú¿Ë¶¨Âɼ´¿Éд³ö³öСÇòÆ«ÀëÆ½ºâλÖõÄÎ»ÒÆ´óСΪxʱºÏÍâÁ¦FºÏµÄ±í´ïʽ£»
b£®¸ù¾ÝСÇò×ö¼òгÔ˶¯µÄÖÜÆÚ¼´¿Éд³ö£®
£¨2£©a¡¢Óɲ£Òâ¶û¶¨ÂÉ·Ö±ðд³öÁ½²¿·ÖÆøÌåµÄѹǿµÄ±í´ïʽ£¬È»ºó¼´¿ÉÇó³ö£»
b¡¢Çó³ö»îÈûµÄÊÜÁ¦ÓëÎ»ÒÆÖ®¼äµÄ¹ØÏµ¹«Ê½£¬È»ºó¼´¿É×ö³öÅжϣ®
½â´ð ½â£º£¨1£©a£®Óɺú¿Ë¶¨Âɿɵã¬Ð¡ÇòÊܵ½µÄºÏÍâÁ¦£ºFºÏ=-£¨k1+k2£©x
b£®µ¯»ÉÖÐ×ÓÕñ¶¯µÄÖÜÆÚ¹«Ê½Ó뵯»ÉµÄ¾¢¶ÈϵÊýÓйأ¬¹«Ê½Îª£ºT=$2¦Ð\sqrt{\frac{m}{{k}_{1}+{k}_{2}}}$
£¨2£©a£®¶Ô×ó±ßÆøÌ壬Óɲ£Òâ¶û¶¨ÂɵãºP0LS=P1£¨L+x£©S
ËùÒÔ£ºP1=$\frac{L}{L+x}•{P}_{0}$
ͬÀí¶ÔÓ񱧮øÌ壬Óɲ£-Âí¶¨ÂɵãºP0LS=P2£¨L-x£©S
ËùÒÔ£ºP2=$\frac{L}{L-x}•{P}_{0}$
ËùÒÔ£º$\frac{{P}_{1}}{{P}_{2}}$=$\frac{L-x}{L+x}$
b£®»îÈûÔÚÔ˶¯µ½¾àÀëÆ½ºâλÖõÄÎ»ÒÆÎªxʱ£¬»îÈûÊܵ½µÄºÏÁ¦µÈÓÚÁ½²¿·ÖÆøÌåѹÁ¦µÄ²î£¬¼´£º
FºÏ=P1S-P2S
ÁªÁ¢µÃ£ºFºÏ=$\frac{{P}_{0}SL}{L+x}$-$\frac{{P}_{0}SL}{L-x}$=$-\frac{2{P}_{0}SLx}{{L}^{2}-{x}^{2}}$
ÒòΪxԶСÓÚL£¬ËùÒÔ£ºFºÏ=$-\frac{2{P}_{0}SLx}{{L}^{2}-{x}^{2}}$¡Ö$-\frac{2{P}_{0}S}{L}•x$=-kx
ÆäÖÐk=$-\frac{2{P}_{0}S}{L}$Ϊһ¶¨Öµ£¬ËùÒÔÔÚAԶСÓÚLµÄÌõ¼þÏ£¬»îÈûµÄÔ˶¯¿ÉÊÓΪ¼òгÔ˶¯£®
´ð£º£¨1£©a£®Ð¡ÇòÆ«ÀëÆ½ºâλÖõÄÎ»ÒÆ´óСΪxʱºÏÍâÁ¦FºÏµÄ±í´ïʽΪFºÏ=-£¨k1+k2£©x£»
b£®Ð¡Çò×ö¼òгÔ˶¯µÄÖÜÆÚΪ$2¦Ð\sqrt{\frac{m}{{k}_{1}+{k}_{2}}}$£®
£¨2£©»îÈûµÄÎ»ÒÆÎªxʱÁ½±ßÆøÌåµÄѹǿP1ºÍP2±ÈֵΪ$\frac{L-x}{L+x}$£»
b£®Ö¤Ã÷¼ûÉÏ£®
µãÆÀ ¸ÃÌâ½áºÏ²£Òâ¶û¶¨ÂÉ¿¼²é¼òгÕñ¶¯µÄÊÜÁ¦Ìص㣬½â´ðµÄ¹Ø¼üÊÇÕýÈ·Àí½â»îÈûÊܵ½µÄºÏÁ¦µÈÓÚÁ½²¿·ÖÆøÌåѹÁ¦µÄ²î£®
| A£® | ¼ÓËÙ¶Èa=$\frac{F}{m}$ | B£® | ¹¦ÂÊP=$\frac{W}{t}$ | C£® | µç³¡Ç¿¶ÈE=$\frac{F}{q}$ | D£® | µçÊÆϕ=$\frac{{E}_{P}}{q}$ |
| A£® | ÔÚÏÂÂäÏàµÈµÄ¸ß¶ÈÄÚ£¬ËٶȵĸıäÁ¿ÏàµÈ | |
| B£® | ÔÚÏÂÂäÏàµÈµÄ¸ß¶ÈÄÚ£¬¶¯ÄܵĸıäÁ¿ÏàµÈ | |
| C£® | ÔÚÏàµÈµÄʱ¼ä¼ä¸ôÄÚ£¬¶¯ÄܵĸıäÁ¿ÏàµÈ | |
| D£® | ÔÚÏàµÈµÄʱ¼ä¼ä¸ôÄÚ£¬ËٶȵĸıäÁ¿ÏàµÈ |
| A£® | ¸ÃÎÀÐǵķ¢ÉäËٶȱض¨Ð¡ÓÚ11.2 km/s | |
| B£® | ÎÀÐÇÔÚ¹ìµÀÉÏÔËÐв»ÊÜÖØÁ¦ | |
| C£® | ÔÚ¹ìµÀIÉÏ£¬ÎÀÐÇÔÚPµãµÄËÙ¶È´óÓÚÔÚQµãµÄËÙ¶È | |
| D£® | ÎÀÐÇÔÚQµãͨ¹ý¼ÓËÙʵÏÖÓɹìµÀI½øÈë¹ìµÀ¢ò |
| A£® | F1ºÍF4ÊÇÒ»¶Ô×÷ÓÃÁ¦ºÍ·´×÷ÓÃÁ¦ | B£® | F1ºÍF2ÊÇÒ»¶Ô×÷ÓÃÁ¦ºÍ·´×÷ÓÃÁ¦ | ||
| C£® | F2ºÍF3ÊÇÒ»¶Ô×÷ÓÃÁ¦ºÍ·´×÷ÓÃÁ¦ | D£® | F3ºÍF4ÊÇÒ»¶Ô×÷ÓÃÁ¦ºÍ·´×÷ÓÃÁ¦ |
| A£® | Á¦´«¸ÐÆ÷ | B£® | ¹â´«¸ÐÆ÷ | C£® | Î»ÒÆ´«¸ÐÆ÷ | D£® | ζȴ«¸ÐÆ÷ |