ÌâÄ¿ÄÚÈÝ
12£®£¨1£©³ýÒÑÓÐµÄÆ÷²Ä£º·½Ä¾°å¡¢°×Ö½¡¢µ¯»É²âÁ¦¼Æ¡¢Ï¸ÉþÌס¢¿Ì¶È³ß¡¢Í¼¶¤ºÍǦ±ÊÍ⣬»¹±ØÐëÓÐÏðƤÌõºÍÈý½Ç°å£®
£¨2£©ÒªÊ¹Ã¿´ÎºÏÁ¦Óë·ÖÁ¦²úÉúÏàͬµÄЧ¹û£¬±ØÐëA
A£®Ã¿´Î½«ÏðƤÌõÀµ½Í¬ÑùµÄλÖá¡¡¡¡¡¡¡¡¡¡¡
B£®Ã¿´Î°ÑÏðƤÌõÀÖ±
C£®Ã¿´Î׼ȷ¶Á³öµ¯»É²âÁ¦¼ÆµÄʾÊý¡¡¡¡¡¡¡¡
D£®Ã¿´Î¼Ç׼ϸÉþµÄ·½Ïò
£¨3£©Ä³Í¬Ñ§µÄʵÑé½á¹ûÈçͼËùʾ£¬ÆäÖÐAΪ¹Ì¶¨ÏðƤÌõµÄͼ¶¤£¬OΪÏðƤÌõÓëÉþÌ×½áµãµÄλÖã®Í¼ÖÐFÊÇÁ¦F1ÓëF2µÄºÏÁ¦µÄÀíÂÛÖµ£¬F¡äÊÇÁ¦F1ÓëF2µÄºÏÁ¦µÄʵÑéÖµ£®
·ÖÎö ×ö̽¾¿¹²µãÁ¦ºÏ³ÉµÄ¹æÂÉʵÑ飺ÎÒÃÇÊÇÈÃÁ½¸öÁ¦ÀÏðƤÌõºÍÒ»¸öÁ¦ÀÏðƤÌõ²úÉúµÄ×÷ÓÃЧ¹ûÏàͬ£¬²â³öÁ½¸öÁ¦µÄ´óСºÍ·½ÏòÒÔ¼°Ò»¸öÁ¦µÄ´óСºÍ·½Ïò£¬ÓÃÁ¦µÄͼʾ»³öÕâÈý¸öÁ¦£¬ÓÃÆ½ÐÐËıßÐÎ×ö³öÁ½¸öÁ¦µÄºÏÁ¦µÄÀíÂÛÖµ£¬ºÍÄÇÒ»¸öÁ¦£¨Êµ¼ÊÖµ£©½øÐбȽϣ®ÓÃÆ½ÐÐËıßÐλ³öÀ´µÄÊÇÀíÂÛÖµ£¬ºÍÏðÆ¤½îͬÏßµÄÄǸöÊÇʵ¼ÊÖµ£®
½â´ð ½â£º£¨1£©×ö̽¾¿¹²µãÁ¦ºÏ³ÉµÄ¹æÂÉʵÑ飺ÎÒÃÇÊÇÈÃÁ½¸öÁ¦ÀÏðƤÌõºÍÒ»¸öÁ¦ÀÏðƤÌõ²úÉúµÄ×÷ÓÃЧ¹ûÏàͬ£¬²â³öÁ½¸öÁ¦µÄ´óСºÍ·½ÏòÒÔ¼°Ò»¸öÁ¦µÄ´óСºÍ·½Ïò£¬ÓÃÁ¦µÄͼʾ»³öÕâÈý¸öÁ¦£¬ÓÃÆ½ÐÐËıßÐÎ×ö³öÁ½¸öÁ¦µÄºÏÁ¦µÄÀíÂÛÖµ£¬ºÍÄÇÒ»¸öÁ¦½øÐбȽϣ®
ËùÒÔÎÒÃÇÐèÒªµÄʵÑéÆ÷²ÄÓУº·½Ä¾°å£¨¹Ì¶¨°×Ö½£©£¬°×Ö½£¨¼Ç¼·½Ïò»Í¼£©¡¢¿Ì¶È³ß£¨Ñ¡±ê¶È£©¡¢ÉþÌ×£¨µ¯»É³ÓÀÏðƤÌõ£©¡¢µ¯»É²âÁ¦¼Æ£¨²âÁ¦µÄ´óС£©¡¢Í¼¶¤£¨¹Ì¶¨°×Ö½£©¡¢Èý½Ç°å£¨»Æ½ÐÐËıßÐΣ©£¬ÏðƤÌõ£¨ÈÃÁ¦²úÉúÏàͬµÄ×÷ÓÃЧ¹ûµÄ£©£®
£¨2£©ÒªÊ¹Ã¿´ÎºÏÁ¦Óë·ÖÁ¦²úÉúÏàͬµÄЧ¹û£¬Ã¿´Î½«ÏðƤÌõÀµ½Í¬ÑùµÄλÖ㬼´ÓÃÒ»¸öÁ¦ÓëÓÃÁ½¸öÁ¦µÄ×÷ÓÃЧ¹ûÏàͬ£¬²â³öÁ½¸öÁ¦µÄ´óСºÍ·½ÏòÒÔ¼°Ò»¸öÁ¦µÄ´óСºÍ·½Ïò£¬Ã»ÓбØÒª°ÑÏðƤÌõÀµ½×î´ó³¤¶È£¬¹ÊBCD´íÎó£¬AÕýÈ·£»
¹ÊÑ¡£ºA£®
£¨3£©ÓÃÆ½ÐÐËıßÐλ³öÀ´µÄÊÇÀíÂÛÖµ£¬ºÍÏðÆ¤½îͬÏßµÄÄǸöÊÇʵ¼ÊÖµ£¬ËùÒÔ£ºFÊÇÀíÂÛÖµ£»F¡äÊÇʵ¼ÊÖµ£®¸ÃʵÑéµÄʵÑéÄ¿µÄ¾ÍÊDZȽÏF1¡¢F2ºÏÁ¦µÄÀíÂÛÖµºÍʵÑéÖµÊÇ·ñÏàµÈ£®
¹Ê´ð°¸Îª£º£¨1£©ÏðƤÌõ£»Èý½Ç°å£» £¨2£©A£» £¨3£©F£» F¡ä£®
µãÆÀ ÔÚ¡°ÑéÖ¤Á¦µÄƽÐÐËıßÐζ¨Ôò¡±ÊµÑéÖУ¬ÎÒÃÇÒªÖªµÀ·ÖÁ¦ºÍºÏÁ¦µÄЧ¹ûÊǵÈͬµÄ£¬ÕâÒªÇóͬѧÃǶÔÓÚ»ù´¡ÖªÊ¶ÒªÊìÁ·ÕÆÎÕ²¢ÄÜÕýÈ·Ó¦Ó㬼ÓÇ¿¶Ô»ù´¡ÊµÑéÀí½â£®
| A£® | Ïä×Ó²»ÔÙÏ»¬ | B£® | Ïä×ÓÈÔÄÜÔÈËÙÏ»¬ | ||
| C£® | Ïä×Ó½«¼ÓËÙÏ»¬ | D£® | Ïä×Ó½«¼õËÙÏ»¬ |
| A£® | Èô´ËͼÏóΪËÙ¶È-ʱ¼ä£¨v-t£©Í¼Ïó£¬Ôò±íʾÖʵã×öÔȱäËÙÖ±ÏßÔ˶¯ | |
| B£® | Èô´ËͼÏóΪÆû³µÆð¶¯Ê±µÄËÙ¶È-ʱ¼ä£¨v-t£©Í¼Ïó£¬Ôò±íʾÆû³µÒԺ㶨¹¦ÂÊÆð¶¯ | |
| C£® | Èô´ËͼÏóÎªÎ»ÒÆ-ʱ¼ä£¨x-t£©Í¼Ïó£¬Ôò±íʾÖʵã×öÔȱäËÙÖ±ÏßÔ˶¯ | |
| D£® | Èô´ËͼÏóΪij²ÄÁϵķü°²ÌØÐÔ£¨I-U£©ÇúÏߣ¬Ôò¸Ã²ÄÁϵĵç×èÂÊËæµçѹºÍµçÁ÷µÄÔö´ó¶ø¼õС |
| A£® | ³·È¥Fºó£¬ÎïÌåÏÈ×ö¼ÓËٶȼõСµÄ¼ÓËÙÔ˶¯£¬ÔÙ×ö¼ÓËÙ¶ÈÔö´óµÄ¼õËÙÔ˶¯£¬ÔÙ×öÔÈËÙÖ±ÏßÔ˶¯ | |
| B£® | ÎïÌå×öÔȼõËÙÔ˶¯µÄʱ¼äΪ2$\sqrt{\frac{{x}_{0}}{¦Ìg}}$ | |
| C£® | ³·È¥Fºó£¬ÎïÌå¸ÕÔ˶¯Ê±µÄ¼ÓËÙ¶È´óСΪ$\frac{k{x}_{0}}{m}$-¦Ìg | |
| D£® | ÎïÌ忪ʼÏò×óÔ˶¯µ½ËÙ¶È×î´óµÄ¹ý³ÌÖп˷þĦ²ÁÁ¦×öµÄ¹¦Îª¦Ìmg£¨x0-$\frac{¦Ìmg}{k}$£© |
| A£® | C¡¢Q¡¢E¶¼Öð½¥Ôö´ó | B£® | C¡¢Q¡¢E¶¼Öð½¥¼õС | ||
| C£® | C¡¢QÖð½¥¼õС£¬E²»±ä | D£® | CÖð½¥¼õС£¬Q¡¢E²»±ä |
| A£® | Îï¿éAµÄ¼ÓËÙ¶È´óСΪ6g | B£® | Îï¿éBµÄ¼ÓËÙ¶È´óСΪ$\frac{g}{2}$£¬·½ÏòÏòÉÏ | ||
| C£® | Îï¿éBµÄ¼ÓËÙ¶È´óСΪg£¬·½ÏòÏòÏ | D£® | Îï¿éCµÄ¼ÓËÙ¶È´óСΪ0 |