题目内容
20.一辆巡逻车最快能在10s内由静止加速到最大速度40m/s,并能保持这个最大速度匀速行驶.在平直的高速公路上,若该巡逻车由静止开始启动加速,追赶前方1200m处正以30m/s的速度匀速行驶的一辆违章卡车.则求出(1)巡逻车在追赶过程中,经过多长时间两车相距最远?最远距离是多少?
(2)巡逻车追上卡车总共至少需要的时间.
分析 (1)当两车速度相等时,相距最远,结合速度时间公式求出两车速度相等经历的时间,根据位移公式,通过位移关系求出最远距离.
(2)巡逻车达到最大速度后做匀速直线运动,结合两车的位移关系,求出追及的时间.
解答 解:(1)巡查车的加速度a=$\frac{{v}_{m}}{t′}=\frac{40}{10}m/{s}^{2}=4m/{s}^{2}$,
两车速度相等经历的时间${t}_{1}=\frac{v}{a}=\frac{30}{4}s=7.5s$,
此时违章卡车的位移x1=vt1=30×7.5m=225m,
巡逻车的位移${x}_{2}=\frac{{v}^{2}}{2a}=\frac{900}{2×4}m=112.5m$,
则最远距离△x=x1+1200-x2=1312.5m.
(2)设追及的时间为t,根据位移关系有:
$vt+1200=\frac{{{v}_{m}}^{2}}{2a}+{v}_{m}(t-\frac{{v}_{m}}{a})$,
代入数据解得t=140s.
答:(1)巡逻车在追赶过程中,经过7.5s时间两车相距最远,最远距离是1312.5m.
(2)巡逻车追上卡车总共至少需要的时间为140s.
点评 本题考查了运动学中的追及问题,关键抓住位移关系,结合运动学公式灵活求解,知道速度相等时,相距最远.
练习册系列答案
相关题目
10.
如图所示,在竖直向下的匀强电场中,一个质量为m、带正电荷的小球从斜轨道上的A点由静止滑下,小球通过半径为R的圆轨道顶端的B点时恰好不落下来.已知轨道是光滑而又绝缘的,且小球所受电场力是小球重力的3倍.则小球( )
| A. | 从A到B,动能增加了3mgR | B. | 从A到B,电场力做功3mg(h-2R) | ||
| C. | 从A到B,机械能变化了4mg(h-2R) | D. | 从A到C,电势能减少了3mgh |
15.
英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场,如图所示,一个半径为r的绝缘光滑细圆环水平放置,环内存在竖直向上的磁场,环上套一带电荷量为q的质量为m的小球,已知磁感应强度大小B随时间均匀增大,其变化率为k,由此可知( )
| A. | 环所在处的感生电场的电场强度的大小为$\frac{kr}{2}$ | |
| B. | 小球在环上受到的电场力为kqr | |
| C. | 若小球只在感生电场力的作用下运动,则其运动的加速度为$\frac{2πkqr}{m}$ | |
| D. | 若小球在环上运动一周,则感生电场对小球的作用力所做的功大小r2qk |
9.从离地20m高处以15m/s的初速度水平抛出一个物体,不计空气阻力,g=10m/s2,求:
(1)物体在空中运动的时间.
(2)这个物体落地点与抛出点的水平距离.
(3)这个物体落地时的速度大小和方向.
(1)物体在空中运动的时间.
(2)这个物体落地点与抛出点的水平距离.
(3)这个物体落地时的速度大小和方向.
10.
如图所示,位于水平地面上的质量为m的物体,在大小为F,与水平方向成α角的拉力作用下沿水平地面做匀加速运动,则下列说法正确的是( )
| A. | 如果地面光滑,物体的加速度为a=$\frac{F}{m}$ | |
| B. | 如果地面光滑,物体的加速度为a=$\frac{Fcosα}{m}$ | |
| C. | 如果物体与地面间的动摩擦因数为μ,则物体的加速度为a=μg | |
| D. | 如果物体与地面间的动摩擦因数为μ,则物体的加速度为a=$\frac{Fsinα-μ(mg-Fsinα)}{m}$ |