题目内容
18.| A. | aA=-2g aB=0 | B. | aA=2g aB=0 | C. | aA=-g aB=g | D. | aA=g aB=g |
分析 悬线剪断前,以两球为研究对象,求出悬线的拉力和弹簧的弹力.突然剪断悬线瞬间,弹簧的弹力没有来得及变化,分析瞬间两球的受力情况,由牛顿第二定律求解加速度.
解答 解:设两球质量为m.
悬线剪断前,以B为研究对象可知:弹簧的弹力F=mg,以A、B整体为研究对象可知悬线的拉力为2mg;
剪断悬线瞬间,悬线拉力消失;而弹簧的弹力不变,F=mg,根据牛顿第二定律得
对A:mg+F=maA,又F=mg,得aA=2g,
对B:F-mg=maB,F=mg,得aB=0
故选:A
点评 本题是动力学中典型的问题:瞬时问题,往往先分析悬线剪断前弹簧的弹力,再分析悬线判断瞬间物体的受力情况,再求解加速度,抓住悬线剪断瞬间弹簧的弹力没有来得及变化.
练习册系列答案
相关题目
3.关于时间和时刻,下列说法正确的是( )
| A. | “物体在4s时”就是指物体在4s末时,指的是时刻 | |
| B. | “物体在4s时”就是指物体在4s初时,指的是时刻 | |
| C. | “物体在4s内”就是指物体在3s末到4s末的这1s时间 | |
| D. | “物体在第5s内”就是指在4s初到5s末这一段时间 |
6.
如图为某小型水电站的电能输送示意图,发电机通过升压变压器T1和降压变压器T2向 用户供电.已知输电线的总电阻R=10Ω,降压变压器T2的原、副线圈匝数之比为4:1,副线圈与用电器R0组成闭合电路.若T1、T2均为理想变压器,T2的副线圈两端电压u=220$\sqrt{2}$sin100πtV,当用电器电阻R0=11Ω时( )
| A. | 通过用电器R0的电流有效值是20A | |
| B. | 当用电器的电阻R0减小时,输电线损耗的功率也随着减小 | |
| C. | 发电机中的电流变化频率为100Hz | |
| D. | 升压变压器的输人功率为4650W |
13.
如图,一带电粒子沿x轴正方向进入一个垂直纸面向外的匀强磁场中,若要使该粒子所受的合外力为零(重力不计),所加匀强电场的方向为( )
| A. | 沿+y方向 | B. | 沿-y方向 | ||
| C. | 沿-x方向 | D. | 因不知粒子正负,无法确定 |
7.
如图所示,在光滑的水平桌面上有一物体A,通过绳子与物体B相连,假设绳子的质量以及绳子与定滑轮之间的摩擦力都可以忽略不计,绳子不可伸长.如果mB=3mA,则绳子对物体A的拉力大小为( )
| A. | mBg | B. | 3mAg | C. | $\frac{3}{4}$mAg | D. | $\frac{3}{4}$mBg |
8.
如图为探究平行板电容器电容大小决定因素的实验.给电容器充电后与电源断开,即保持电量Q不变,那么若保持板间距离d不变,正对面积S变小,则 ( )
| A. | 电容C变小,两板电势差U变小 | B. | 电容C变小,两板电势差U变大 | ||
| C. | 电容C变大,两板电势差U变小 | D. | 电容C变大,两板电势差U变大 |