ÌâÄ¿ÄÚÈÝ
11£®·ÖÎö ¶ÔÁ½ÖÖÇé¿ö£¬·Ö±ðÔËÓü¸ºÎ֪ʶºÍÕÛÉ䶨ÂÉÁÐʽ£¬¼´¿ÉÇóµÃÓÎÓ¾³ØµÄÉî¶ÈHºÍË®µÄÕÛÉäÂÊn£®
½â´ð ½â£ºÈçͼ£®µ±ÈËÁ½½Å²¢Â£ÔÚAµãʱ£¬´ÓL1´¦·¢³öµÄ¹âÏßÔÚAµãµÄÕÛÉä½Ç r1=45¡ã
ÈëÉä½ÇµÄÕýÏÒ sini1=$\frac{{L}_{1}}{\sqrt{{H}^{2}+{L}_{1}^{2}}}$¡¢Ù
ÓÉÕÛÉ䶨Âɵà n=$\frac{sin{r}_{1}}{sin{i}_{1}}$=$\frac{sin45¡ã}{\frac{{L}_{1}}{\sqrt{{H}^{2}+{L}_{1}^{2}}}}$¡¢Ú
ÉèÈ˵ÄÉí¸ßΪh£®µ±ÈËÁ½½Å²¢Â£ÔÚBµãʱ£¬´ÓL2´¦·¢³öµÄ¹âÏßÔÚAµãµÄÕÛÉä½ÇÕýÏÒ sinr2=$\frac{2h}{\sqrt{£¨2h£©^{2}+{h}^{2}}}$=$\frac{2}{\sqrt{5}}$¡¢Û
ÈëÉä½ÇµÄÕýÏÒ sini2=$\frac{{L}_{2}}{\sqrt{{H}^{2}+{L}_{2}^{2}}}$¡¢Ü
ÓÉÕÛÉ䶨Âɵà n=$\frac{sin{r}_{2}}{sin{i}_{2}}$¡¢Ý
ÁªÁ¢¢Ù¡«¢ÝʽµÃ H=$\frac{\sqrt{3}{L}_{1}{L}_{2}}{\sqrt{5{L}_{2}^{2}-8{L}_{1}^{2}}}$£¬n=2$\sqrt{\frac{{L}_{2}^{2}-{L}_{1}^{2}}{5{L}_{2}^{2}-8{L}_{1}^{2}}}$
´ð£ºÓÎÓ¾³ØµÄÉî¶ÈHºÍË®µÄÕÛÉäÂÊn·Ö±ðΪ$\frac{\sqrt{3}{L}_{1}{L}_{2}}{\sqrt{5{L}_{2}^{2}-8{L}_{1}^{2}}}$ºÍ$\sqrt{\frac{{L}_{2}^{2}-{L}_{1}^{2}}{5{L}_{2}^{2}-8{L}_{1}^{2}}}$£®
µãÆÀ ±¾ÌâÊÇÕÛÉ䶨ÂɵÄÓ¦ÓÃÎÊÌ⣬¹Ø¼üÒª¸ù¾Ý¼¸ºÎ֪ʶÇó³öÈëÉä½ÇÓëÕÛÉä½Ç»òËüÃǵÄÕýÏÒÖµ£¬¶à´ÎÔËÓÃÕÛÉ䶨ÂɽøÐд¦Àí£®
| A£® | ÖØÁ¦ | B£® | Ö§³ÖÁ¦ | C£® | ¾²Ä¦²ÁÁ¦ | D£® | »¬¶¯Ä¦²ÁÁ¦ |
| A£® | ${\;}_{14}^{30}$SiºËÄÚÓÐ14¸öÖÐ×Ó | |
| B£® | XÁ£×ÓÊÇÖÊ×Ó | |
| C£® | XÁ£×ÓÊǵç×Ó | |
| D£® | ¸ÃºË·´Ó¦·½³Ì×ñÑÖÊÁ¿ÊýºÍºËµçºÉÊýÊØºã |
¢ÙʵÑéÖÐÓÃÂÝÐý²â΢Æ÷²âµÃµç×èË¿µÄÖ±¾¶Èçͼ£¨b£©Ëùʾ£¬ÆäʾÊýΪd=0.530mm
¢Ú´Ö²â¸Ãµç×èË¿abµÄµç×裮ÓÃÒѾµ÷ºÃÁãÇÒÑ¡Ôñ¿ª¹ØÖ¸ÏòÅ·Ä·µ²¡°¡Á10¡±µÄ¶àÓõç±í²âÁ¿£¬·¢ÏÖÖ¸ÕëµÄƫת½Ç¶ÈÌ«´ó£¬ÕâʱËûÓ¦½«Ñ¡Ôñ¿ª¹Ø»»³ÉÅ·Ä·µ²µÄµ²Î»¡Á1£¨Ñ¡Ìî¡°¡Á100¡±»ò¡°¡Á1¡±£©£¬È»ºó½«ºì¡¢ºÚ±í±ÊµÄ½ðÊô²¿·Ö¶Ì½Ó£¬½øÐÐÅ·Ä·µ÷Á㣬ÔٴβâÁ¿µç×èË¿µÄ×èÖµ£®
¢Û°´Í¼£¨a£©ÊµÑéʱ±ÕºÏµç¼ü£¬µ÷½ÚPµÄλÖ㬽«a P³¤¶ÈxºÍ¶ÔÓ¦µÄµçѹU¡¢µçÁ÷IÊý¾Ý¼Ç¼Èç±í£º
| x£¨m£© | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 |
| U£¨V£© | 1.50 | 1.72 | 1.95 | 2.00 | 2.10 | 2.18 |
| I£¨A£© | 0.49 | 0.43 | 0.38 | 0.33 | 0.31 | 0.28 |
| $\frac{U}{I}$£¨¦¸£© | 3.06 | 4.00 | 5.13 | 6.06 | 6.77 | 7.79 |
¢ÜÇëÄã¸ù¾Ý±íÖÐÊý¾ÝÔÚͼ£¨d£©ÉÏÃèµãÁ¬Ïß×÷$\frac{U}{I}$ºÍx¹ØÏµÍ¼Ïߣ»
¢Ýͼ£¨d£©ÖÐ$\frac{U}{I}$ºÍx¹ØÏµÍ¼ÏßµÄбÂÊÉèΪK£¬Ôòµç×èË¿µÄµç×èÂʵıí´ïʽΪ$\frac{{¦Ðk{d^2}}}{4}$£¨ÓÃk¡¢d±íʾ£©£¬×ÝÖáÉϽؾà±íʾµÄÎïÀíÁ¿ÊǵçÁ÷±íÄÚ×裮