ÌâÄ¿ÄÚÈÝ
2£®£¨1£©M¡¢N¼äµç³¡Ç¿¶ÈEµÄ´óС£»
£¨2£©Ô²Í²µÄ°ë¾¶R£»
£¨3£©Èôµ÷ÕûM¡¢N°å¼äµç³¡Ç¿¶ÈEµÄ´óС£®Á£×ÓÈÔ´ÓM°å±ßÔµµÄP´¦Óɾ²Ö¹ÊÍ·Å£¬Ê¹Á£×Ó×Ô½øÈëԲͲ£¬ÖÁ´ÓS¿×ÉäÈëµç³¡ÆÚ¼äÓëԲͲÅöײ5´Î£¬ÇóÁ£×ÓÓÉP´¦Éä³öÖÁ·µ»ØP´¦µÄʱ¼ät£®
·ÖÎö £¨1£©Á£×ÓÔÚÔÈÇ¿µç³¡ÖÐÔÚ¼ÓËÙÔ˶¯£¬µç³¡Á¦×ö¹¦µÈÓÚÁ£×Ó¶¯ÄܵÄÔö¼Ó£¬¸ù¾Ý¶¯Äܶ¨ÀíºÍ¹«Ê½U=EdÇó½â³¡Ç¿EµÄ´óС£»
£¨2£©Á£×ÓÔڴų¡ÖÐÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÁÐʽ¿ÉÇó³öÁ£×ÓÔ˶¯µÄ¹ì¼£°ë¾¶£¬ÔÙ¸ù¾ÝÌâÒ⣬ÕýÈ·»³öÁ£×ÓÔ˶¯µÄ¹ì¼££¬¸ù¾Ý¼¸ºÎ¹ØÏµÐ´³öÁ£×ӵİ뾶Óë´Å³¡µÄ°ë¾¶µÄ¹ØÏµ£¬´Ó¶øÇó³öԲͲµÄ°ë¾¶R£®
£¨3£©ÖÁ´ÓS¿×ÉäÈëµç³¡ÆÚ¼äÓëԲͲÅöײ5´Î£¬¸ù¾Ý¼¸ºÎ¹ØÏµ¿ÉÖª£¬5ÅöײµãºÍS½«Ô²Í²6µÈ·Ö£¬Çó³ö°ë¾¶£¬½ø¶øÇó³ö½ø¶ø´Å³¡Ê±µÄËÙ¶È£¬Á£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼äΪһ¸öÖÜÆÚ£¬¸ù¾ÝÔ˶¯Ñ§»ù±¾¹«Ê½Çó³öÔڵ糡ÖÐÔ˶¯µÄʱ¼ä¼´¿ÉÇó½â£®
½â´ð ½â£º£¨1£©ÉèÁ½°å¼äµÄµçѹΪU£¬Óɶ¯Äܶ¨ÀíµÃ£ºqU=$\frac{1}{2}$mv2-0¡¢Ù
ÓÉÔÈÇ¿µç³¡ÖеçÊÆ²îÓëµç³¡Ç¿¶ÈµÄ¹ØÏµµÃ£ºU=Ed¡¢Ú
ÁªÁ¢ÉÏʽ¿ÉµÃ£ºE=$\frac{m{v}^{2}}{2qd}$¡¢Û
£¨2£©Á£×Ó½øÈë´Å³¡ºóÓÖ´ÓSµãÉä³ö£¬¸ù¾Ý¼¸ºÎ¹ØÏµ¿ÉÖª£¬Á½ÅöײµãºÍS½«Ô²Í²ÈýµÈ·Ö£®
ÉèÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄ¹ìµÀ°ë¾¶Îªr£¬ÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬µÃ£º
$Bqv=m\frac{{v}^{2}}{r}$
¸ù¾Ý¼¸ºÎ¹ØÏµr=$\sqrt{3}R$
ÁªÁ¢ÉÏʽ£¬½âµÃ£ºR=$\frac{\sqrt{3}mv}{3qB}$
£¨3£©ÖÁ´ÓS¿×ÉäÈëµç³¡ÆÚ¼äÓëԲͲÅöײ5´Î£¬¸ù¾Ý¼¸ºÎ¹ØÏµ¿ÉÖª£¬5ÅöײµãºÍS½«Ô²Í²6µÈ·Ö£¬ÔòÓÐÔ²ÖÜÔ˶¯µÄ°ë¾¶r¡ä=R£¬
¸ù¾Ý$Bqv¡ä=m\frac{{v¡ä}^{2}}{r¡ä}$
½âµÃ£º$v¡ä=\frac{BqR}{m}$
Á£×ÓÔڴų¡ÖÐÔ˶¯µÄʱ¼äΪһ¸öÖÜÆÚt${\;}_{1}=T=\frac{2¦Ðm}{Bq}$£¬
Á£×ÓÔڵ糡ÖмÓËÙµÄʱ¼ä${t}_{2}=\frac{d}{\frac{v¡ä}{2}}=\frac{2dm}{BqR}$£¬
ËùÒÔÁ£×ÓÓÉP´¦Éä³öÖÁ·µ»ØP´¦µÄʱ¼ät=${t}_{1}+2{t}_{2}=\frac{2¦Ðm}{Bq}+\frac{4dm}{BqR}$=$\frac{2¦Ðm}{Bq}+\frac{4\sqrt{3}d}{v}$£®
´ð£º£¨1£©M¡¢N¼äµç³¡Ç¿¶ÈEµÄ´óСΪ$\frac{m{v}^{2}}{2qd}$£»
£¨2£©Ô²Í²µÄ°ë¾¶RΪ$\frac{\sqrt{3}mv}{3qB}$£»
£¨3£©Á£×ÓÓÉP´¦Éä³öÖÁ·µ»ØP´¦µÄʱ¼ätΪ$\frac{2¦Ðm}{Bq}+\frac{4\sqrt{3}d}{v}$£®
µãÆÀ ½â¾ö¸ÃÌâµÄ¹Ø¼üÊǸù¾ÝÌâÄ¿µÄÒªÇó£¬ÕýÈ·»³öÁ£×ÓÔ˶¯µÄ¹ì¼££¬²¢¸ù¾Ý¼¸ºÎ¹ØÏµÐ´³öÁ£×ӵİ뾶Óë´Å³¡µÄ°ë¾¶µÄ¹ØÏµ£®¸ÃÌâ¶Ô¿Õ¼ä˼άµÄÄÜÁ¦ÒªÇó±È½Ï¸ß£®
| A£® | E=2¦Ðk¦Ò£¨$\frac{{R}_{1}}{\sqrt{{x}^{2}+{{R}_{1}}^{2}}}$-$\frac{{R}_{2}}{\sqrt{{x}^{2}+{{R}_{2}}^{2}}}$£©x | B£® | E=2¦Ðk¦Ò£¨$\frac{1}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$©\$\frac{1}{\sqrt{{x}^{2}+{R}_{2}^{2}}}$£©x | ||
| C£® | E=2¦Ðk¦Ò£¨$\frac{{R}_{1}}{\sqrt{{x}^{2}+{{{R}_{1}}^{2}}^{\;}}}$+$\frac{{R}_{2}}{\sqrt{{x}^{2}+{R}_{2}^{2}}}$£© | D£® | E=2¦Ðk¦Ò£¨$\frac{1}{\sqrt{{x}^{2}+{R}_{1}^{2}}}$+$\frac{1}{\sqrt{{x}^{2}+{R}_{2}^{2}}}$£©x |
| A£® | ÔÚaµãÔÚÓÚÈÝÒ×·ÉÀëµØÃæ | B£® | ÔÚbµãÔÚÓÚÈÝÒ×·ÉÀëµØÃæ | ||
| C£® | ÔÚcµã×îÈÝÒ×±¬Ì¥ | D£® | ÔÚdµã×îÈÝÒ×±¬Ì¥ |
| ÊÔÑé´ÎÊý | 1 | 2 | 3 | 4 | 5 |
| I£¨A£© | 0.40 | 0.80 | 1.00 | 1.60 | 2.00 |
| U£¨V£© | 2.80 | 2.60 | 2.50 | 2.20 | 2.00 |