ÌâÄ¿ÄÚÈÝ
16£®£¨1£©Ô˶¯Ô±¸ÕºÃÄܹýDµã£¬ACµÄ¸ß¶È²îh£»
£¨2£©Ô˶¯Ô±¸ÕÔâÓöÇ¿·çʱµÄËÙ¶È´óС¼°¾àµØÃæµÄ¸ß¶È£»
£¨3£©Ç¿·ç¶ÔÔ˶¯Ô±Ëù×öµÄ¹¦£®
·ÖÎö £¨1£©ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇóµÄ×î¸ßµãµÄËÙ¶È£¬Óɶ¯Äܶ¨ÀíÇóµÄ¸ß¶È
£¨2£©Ô˶¯Ô±×öƽÅ×Ô˶¯£¬¹ÊÔÚÊúÖ±·½Ïò×ÔÓÉÂäÌåÔ˶¯£¬ÔÙ½áºÏ¶¯Äܶ¨Àí¼´¿ÉÇóµÃ
£¨3£©Óɶ¯Äܶ¨Àí¼´¿ÉÇóµÃ×ö¹¦
½â´ð ½â£º£¨1£©Ô˶¯Ô±¸ÕºÃ×öÔ²ÖÜÔ˶¯µÄËÙ¶ÈÂú×ã$mg=\frac{{mv}_{D}^{2}}{R}$
Óɶ¯Äܶ¨ÀíµÃmg£¨h-2R£©=$\frac{1}{2}{mv}_{D}^{2}$
ÁªÁ¢½âµÃh=$\frac{5}{2}R$
£¨2£©Ô˶¯Ô±×öƽÅ×Ô˶¯£¬ÔÚÊúÖ±·½ÏòµÄËÙ¶Èv¡ä=gt
´ÓAµ½CÓɶ¯Äܶ¨ÀíµÃ$mg•\frac{5}{2}R=\frac{1}{2}{mv}_{0}^{2}$
v=$\sqrt{{v}_{0}^{2}+v{¡ä}^{2}}$
ÏÂÂä¸ß¶ÈΪ${h}_{1}=\frac{1}{2}g{t}^{2}$
¾àµØÃæ¸ßËÙΪ${h}_{2}=H-{h}_{1}=H-\frac{1}{2}g{t}^{2}$
£¨3£©Óɶ¯Äܶ¨ÀíµÃ${W}_{f}+mg£¨H+\frac{5}{2}R£©=\frac{1}{2}m{v}^{2}$
${W}_{f}=\frac{1}{2}m{v}^{2}-mg£¨H+\frac{5}{2}R£©$
´ð£º£¨1£©Ô˶¯Ô±¸ÕºÃÄܹýDµã£¬ACµÄ¸ß¶È²îh$\frac{5}{2}R$£»
£¨2£©Ô˶¯Ô±¸ÕÔâÓöÇ¿·çʱµÄËÙ¶È´óСΪ$\sqrt{{v}_{0}^{2}+v{¡ä}^{2}}$¼°¾àµØÃæµÄ¸ß¶È$H-\frac{1}{2}g{t}^{2}$£»
£¨3£©Ç¿·ç¶ÔÔ˶¯Ô±Ëù×öµÄ¹¦$\frac{1}{2}m{v}^{2}-mg£¨H+\frac{5}{2}R£©$£®
µãÆÀ ±¾Ìâ×ۺϿ¼²éÁ˶¨Äܶ¨Àí¡¢Å£¶ÙµÚ¶þ¶¨ÂÉ£¬Í¬Ê±±¾ÌâÓÖÊÇÒ»¸ö¶à¹ý³ÌÎÊÌ⣬¹Ø¼üÀíÇåÎïÌåµÄÔ˶¯£¬Ñ¡ÔñºÏÊʵĹæÂɽøÐÐÇó½â
| A£® | $\frac{U_1}{I_1}$ | B£® | $\frac{U_2}{I_2}$ | C£® | $\frac{U_3}{I_3}$ | D£® | $\frac{{{U_2}-{U_1}}}{I_1}$ |
| A£® | ÖʵãµÄÔ˶¯¼ÓËÙ¶ÈÖð½¥¼õС | |
| B£® | ÖʵãµÄÔ˶¯¼ÓËÙ¶ÈÖð½¥Ôö´ó | |
| C£® | ͼÏßбÂÊÔ½´ó£¬Ä³Ë²Ê±ËٶȶÔÓ¦µÄ¼ÓËÙ¶ÈԽС | |
| D£® | ͼÏßбÂÊÔ½´ó£¬Ä³Ë²Ê±ËٶȶÔÓ¦µÄ¼ÓËÙ¶ÈÔ½´ó |
| m/kg | a/m•s2 |
| 0.20 | 0.60 |
| 0.30 | 0.40 |
| 0.40 | 0.29 |
| 0.50 | 0.25 |
| 0.50 | 0.20 |
| A£® | Öʵã×öÖ±ÏßÔ˶¯Ê±Î»ÒƵĴóСµÈÓÚ·³Ì | |
| B£® | ÔÈËÙÔ²ÖÜÔ˶¯ÊÇÒ»ÖÖ±ä¼ÓËÙÔ˶¯ | |
| C£® | ƽÅ×Ô˶¯ÊÇÒ»ÖÖÔȱäËÙÔ˶¯ | |
| D£® | Á½¸öÔȱäËÙÖ±ÏßÔ˶¯µÄºÏÔ˶¯Ò»¶¨ÊÇÔȱäËÙÖ±ÏßÔ˶¯ |