题目内容
6.一逃犯骑着摩托车正以54km/h的速度沿公路逃窜.当逃犯途经路口处后,守候在路口处的公安干警在2秒的反应时间后立即以1.5/m2的加速度启动警车,警车所能达到的最大速度为108km/h.则经过多长时间在何处能将逃犯截获?分析 警车先加速到最大速度后再匀速运动,截获逃犯和警车的位移关系,根据运动学公式求出追及的时间,结合位移公式求出截获处离路口的距离.
解答 解:54km/h=15m/s,108km/h=30m/s,
设经过t时间追上逃犯,
根据位移关系有:$\frac{{{v}_{m}}^{2}}{2a}+{v}_{m}(t-\frac{{v}_{m}}{a})=v(t+2)$,
代入数据解得t=22s.
离路口处的距离x=v(t+2)=15×(22+2)m=360m.
答:经过22s时间在离路口360m处将逃犯截获.
点评 解决本题的关键知道警车和摩托车在整个过程中的运动规律,结合运动学公式灵活求解,难度不大.
练习册系列答案
相关题目
14.
如图所示,一个箱子中放有一个物体,已知静止时物体对下底面的压力等于物体的重力,且物体与箱子上表面刚好接触.现将箱子以初速度v0竖直向上抛出,已知箱子所受空气阻力与箱子运动的速率成正比,且箱子运动过程中始终保持图示姿态.则下列说法正确的是( )
| A. | 上升过程中,物体对箱子的下底面有压力,且压力越来越小 | |
| B. | 上升过程中,物体对箱子的上底面有压力,且压力越来越小 | |
| C. | 下降过程中,物体对箱子的下底面有压力,且压力越来越大 | |
| D. | 下降过程中,物体对箱子的上底面有压力,且压力越来越小 |
1.
如下图所示的装置中,重为4N的物块,用一平行于斜面的细线拴在斜面上端的小柱上,整个装置被固定在测力计上并保持静止,斜面的倾角为30°.如果物块与斜面间无摩擦,装置稳定以后,烧断细线,物块下滑,与稳定时比较,测力计读数( )
| A. | 增大4N | B. | 增大3N | C. | 减小1N | D. | 不变 |
15.某电场的电场线如图,则同一点正电荷在A点和B点所受电场力的大小关系是( )

| A. | FA>FB | B. | FA<FB | ||
| C. | FA=FB | D. | 电荷正负不明无法判断 |
16.
竖直平面内有一半径为R的光滑半圆形轨道,圆心为O,一小球以某一水平速度v0从最高点A出发沿圆轨道运动,至B点时脱离轨道,最终落在水平面上的C点,OA和OB间的夹角为θ,不计空气阻力.下列说法中正确的是( )
| A. | cosθ=$\frac{2}{3}$ | |
| B. | 在B点时,小球的速度为$\sqrt{gRcosθ}$ | |
| C. | A到B过程中,小球水平方向的加速度先增大后减小 | |
| D. | A到C过程中,小球运动时间大于$\sqrt{\frac{2R}{g}}$ |