题目内容

2.一质量不计的直角形支架两端分别连接质量为m和2m的小球A和B.支架的两直角边长度分别为2l和l,支架可绕固定轴O在竖直平面内无摩擦转动,如图所示.开始时OA边处于水平位置,由静止释放,则(  )
A.A球的最大速度为$2\sqrt{gl}$
B.A球速度最大时,AB两球的总重力势能最小
C.A球在向下运动的过程中机械能增大
D.A、B两球的最大速度之比va:vb=2:1

分析 AB两个球组成的系统机械能守恒,但对于单个的球来说机械能是不守恒的,根据系统的机械能守恒列式可以求得AB之间的关系,同时由于AB是同时转动的,它们的角速度的大小相同.

解答 解:B、由机械能守恒可知,两球总重力势能最小时,二者的动能最大,故B正确;
D、根据题意知两球的角速度相同,线速度之比为VA:VB=ω•2l:ω•l=2:1,故D正确;
A、当OA与竖直方向的夹角为θ时,由机械能守恒得:
 mg•2lcosθ-2mg•l(1-sinθ)=$\frac{1}{2}$mVA2+$\frac{1}{2}$•2mVB2
解得:VA2=$\frac{8}{3}$gl(sinθ+cosθ)-$\frac{8}{3}$gl,
由数学知识知,当θ=45°时,sinθ+cosθ有最大值,最大值为:VA=$\sqrt{(\sqrt{2}-1)\frac{8}{3}gl}$,故A错误.
C、A球在向下运动的过程中,杆对A做负功,机械能减小,故C错误
故选:BD.

点评 本题中的AB的位置关系并不是在一条直线上,所以在球AB的势能的变化时要注意它们之间的关系,在解题的过程中还要用到数学的三角函数的知识,要求学生的数学基本功要好,本题由一定的难度

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网