题目内容
9.如图所示,当小车向右加速运动时,物块M相对车厢静止于竖直车厢壁上,当车的加速度增大时( )| A. | M受静摩擦力增大 | B. | M对车厢壁的压力不变 | ||
| C. | M仍相对于车厢静止 | D. | M受静摩擦力不变 |
分析 分析物块的受力情况,根据牛顿第二定律分析摩擦力、弹力与加速度的关系,再分析加速度增大时,各力如何变化.
解答 解:以物块为研究对象,分析受力情况如图:重力Mg,车厢的弹力N和静摩擦力f,根据牛顿第二定律得
,
水平方向:N=Ma
竖直方向:f=Mg
所以当加速度增大时,N增大,根据牛顿第三定律得知,物块M对车厢壁的压力增大.M所受的最大静摩擦力增大,物块在竖直方向受力平衡,即f=Mg不变.
故选:CD.
点评 解决本题的关键知道物块与小车具有相同的加速度,隔离对物块分析,运用牛顿第二定律进行求解.
练习册系列答案
相关题目
17.在做“研究匀变速直线运动”的实验时,某同学得到一条用电火花计时器打下的纸带如图1所示,并在其上取了A、B、C、D、E、F、G 7个计数点,每相邻两个计数点间还有4个点图中没有画出.

(1)设相邻两计数点间时间间隔为T,题中计算F点的瞬时速度vF的公式为vF=$\frac{{{d}_{6}-d}_{4}}{2T}$;计算加速度a的公式为$\frac{{d}_{6}-{2d}_{3}}{{9T}^{2}}$
(2)他经过测量并计算得到电火花计时器在打B、C、D、E、F各点时物体的瞬时速度如下表.以A点对应的时刻为t=0,试在图2所示坐标系中合理地选择标度,作出v-t图象,并利用该图象求出物体的加速度a=0.40m/s2;(保留2为有效数字)
(3)如果当时电网中交变电流的电压变成210V,而做实验的同学并不知道,那么加速度的测量值与实际值相比不变.(填“偏大”、“偏小”或“不变”)
(1)设相邻两计数点间时间间隔为T,题中计算F点的瞬时速度vF的公式为vF=$\frac{{{d}_{6}-d}_{4}}{2T}$;计算加速度a的公式为$\frac{{d}_{6}-{2d}_{3}}{{9T}^{2}}$
(2)他经过测量并计算得到电火花计时器在打B、C、D、E、F各点时物体的瞬时速度如下表.以A点对应的时刻为t=0,试在图2所示坐标系中合理地选择标度,作出v-t图象,并利用该图象求出物体的加速度a=0.40m/s2;(保留2为有效数字)
| 对应点 | B | C | D | E | F |
| 速度(m/s) | 0.141 | 0.180 | 0.218 | 0.262 | 0.301 |
4.
某电场的部分电场线如图所示,A、B是一带电粒子仅在电场力作用下运动轨迹(图中虚线)上的两点,下列说法中正确的是( )
| A. | 粒子一定是从B点向A点运动 | |
| B. | 粒子在A点的加速度大于它在B点的加速度 | |
| C. | 粒子在A点的动能小于它在B点的动能 | |
| D. | 电场中A点的电势高于B点的电势 |
19.某实验小组利用如图甲所示的装置探究功和动能变化的关系,他们将宽度为d的挡光片固定在小车上,用不可伸长的细线将其通过一个定滑轮与砝码盘相连,在水平桌面上的A、B两点各安装一个光电门,记录小车通过A、B时的遮光时间,小车中可以放置砝码.

(1)实验中木板略微倾斜,这样做目的是CD
A.为了使释放小车后,小车能匀加速下滑
B.为了增大小车下滑的加速度
C.可使得细线拉力做的功等于合力对小车做的功
D.可使得小车在未施加拉力时能匀速下滑
(2)实验主要步骤如下:
①将小车停在C点,在砝码盘中放上砝码,小车在细线拉动下运动,记录此时小车及小车中砝码的质量之和为M,砝码盘和盘中砝码的总质量为m,并使得m远小于M.小车通过A、B时的遮光时间分别为t1、t2,则小车通过A、B过程中动能的变化量△E=$\frac{1}{2}M[{(\frac{d}{t_2})^2}-{(\frac{d}{t_1})^2}]$(用字母M、t1、t2、d表示).
②在小车中增减砝码或在砝码盘中增减砝码,重复①的操作.
③如图乙所示,用游标卡尺测量挡光片的宽度d=0.550cm.
(3)表是他们测得的多组数据,其中M是小车及小车中砝码质量之和,|v22-v12|是两个速度的平方差,可以据此计算出动能变化量△E,F是砝码盘及盘中砝码的总重力,W是F在A、B间所做的功.表格中△E3=0.600J,W3=0.610J(结果保留三位有效数字).
(1)实验中木板略微倾斜,这样做目的是CD
A.为了使释放小车后,小车能匀加速下滑
B.为了增大小车下滑的加速度
C.可使得细线拉力做的功等于合力对小车做的功
D.可使得小车在未施加拉力时能匀速下滑
(2)实验主要步骤如下:
①将小车停在C点,在砝码盘中放上砝码,小车在细线拉动下运动,记录此时小车及小车中砝码的质量之和为M,砝码盘和盘中砝码的总质量为m,并使得m远小于M.小车通过A、B时的遮光时间分别为t1、t2,则小车通过A、B过程中动能的变化量△E=$\frac{1}{2}M[{(\frac{d}{t_2})^2}-{(\frac{d}{t_1})^2}]$(用字母M、t1、t2、d表示).
②在小车中增减砝码或在砝码盘中增减砝码,重复①的操作.
③如图乙所示,用游标卡尺测量挡光片的宽度d=0.550cm.
(3)表是他们测得的多组数据,其中M是小车及小车中砝码质量之和,|v22-v12|是两个速度的平方差,可以据此计算出动能变化量△E,F是砝码盘及盘中砝码的总重力,W是F在A、B间所做的功.表格中△E3=0.600J,W3=0.610J(结果保留三位有效数字).
| 次数 | M/kg | |v22-v12|/(m/s)2 | △E/J | F/N | W/J |
| 1 | 0.500 | 0.760 | 0.190 | 0.400 | 0.200 |
| 2 | 0.500 | 1.65 | 0.413 | 0.840 | 0.420 |
| 3 | 0.500 | 2.40 | △E3 | 1.220 | W3 |
| 4 | 1.000 | 2.40 | 1.20 | 2.420 | 1.21 |
| 5 | 1.000 | 2.84 | 1.42 | 2.860 | 1.43 |