ÌâÄ¿ÄÚÈÝ
16£®£¨1£©Mµãµ½×ø±êÔµãµÄ¾àÀë
£¨2£©Á£×Ó´ÓQÔ˶¯µ½MµãËùÓõÄʱ¼ä£®
·ÖÎö £¨1£©Á£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½Çó³öÁ£×ÓÉäÈë´Å³¡Ê±ËÙ¶È·½ÏòÓëxÖá·½ÏòµÄ¼Ð½Ç£®¸ù¾Ý¼¸ºÎ¹ØÏµÇó³öMµãÓë×ø±êÔµãO¼äµÄ¾àÀ룮
£¨2£©¸ù¾ÝÁ£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÔ²ÐĽÇÇó³öÁ£×ÓÔڴų¡ÖеÄÔ˶¯Ê±¼ä£¬½áºÏÀàÆ½Å×Ô˶¯µÄʱ¼äÇó³öʱ¼ä£®
½â´ð ½â£º£¨1£©´øµçÁ£×ÓÔڵ糡ÖÐ×öÀàÆ½Å×Ô˶¯£¬ÔÚyÖḺ·½ÏòÉÏ×ö³õËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯£¬Éè¼ÓËٶȵĴóСΪa£»
ÔÚxÖáÕý·½ÏòÉÏ×öÔÈËÙÖ±ÏßÔ˶¯£¬ÉèËÙ¶ÈΪv0£»Á£×Ó´ÓPµãÔ˶¯µ½QµãËùÓõÄʱ¼äΪt1£¬½øÈë´Å³¡Ê±ËÙ¶È·½ÏòÓëxÖáÕý·½ÏòµÄ¼Ð½ÇΪ¦È£¬
ÓÉÅ£¶ÙµÚ¶þ¶¨ÂɵãºqE=ma¡¢Ù
Ôڵ糡ÖÐÔ˶¯µÄʱ¼äΪ£ºt1=$\sqrt{\frac{2{y}_{0}}{a}}$£®£® ¢Ú![]()
ˮƽ³õËÙ¶È£ºv0=$\frac{{x}_{0}}{{t}_{1}}$¡¢Û
ÆäÖУºx0=2$\sqrt{3}$l£¬y0=l£¬tan¦È=$\frac{a{t}_{1}}{{v}_{0}}$¡¢Ü
ÁªÁ¢¢Ú¢Û¢Ü½âµÃ£º¦È=30¡ã¡¢Ý
Óɼ¸ºÎ¹ØÏµÖªMQΪֱ¾¶£¬R=2$\sqrt{3}$l¡¢Þ
MO=$\sqrt{M{Q}^{2}-O{Q}^{2}}$=$\sqrt{£¨2¡Á2\sqrt{3}l£©^{2}-£¨2\sqrt{3}l£©^{2}}$=6l¡¢ß
£¨2£©ÉèÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄËÙ¶ÈΪv£¬´ÓQµ½MµãÔ˶¯µÄʱ¼äΪt2£¬ÔòÓÐ
v=$\frac{{v}_{0}}{cos¦È}$¡¢à
t2=$\frac{¦ÐR}{v}$¡¢á
´ÓQµãµ½MµãËùÓõÄʱ¼äΪ£ºt2=$\frac{3}{2}$¦Ð$\sqrt{\frac{2ml}{qE}}$£»
£¨1£©MµãÓë×ø±êÔµãµÄ¾àÀëΪ6l£»
£¨2£©Á£×Ó´ÓQÔ˶¯µ½MµãËùÓõÄʱ¼äΪ$\frac{3}{2}$¦Ð$\sqrt{\frac{2ml}{qE}}$£®
µãÆÀ ½â¾ö´ËÀàÌâÄ¿µÄ¹Ø¼üÊÇÖªµÀÁ£×ÓÔÚ¸÷¸ö½×¶ÎµÄÔ˶¯ÐÔÖÊ£¬ÔÙ·Ö±ðÓ¦Óò»Í¬µÄ֪ʶȥÇó½â£¬¿ÉÒÔÏÈ»³ö²ÝͼÔÙ·ÖÎö£»±¾Ì⿼²éÁËÇóÁ£×ÓÔ˶¯µÄ¾àÀë¡¢Á£×ÓÔ˶¯Ê±¼ä£¬·ÖÎöÇå³þÁ£×ÓÔ˶¯¹ý³Ì¡¢×÷³öÁ£×ÓÔ˶¯¹ì¼£ÊÇÕýÈ·½âÌâµÄǰÌáÓë¹Ø¼ü£¬Ó¦ÓÃÀàÆ½Å×Ô˶¯¹æÂÉ¡¢Å£¶ÙµÚ¶þ¶¨ÂÉ¡¢Á£×Ó×öÔ²ÖÜÔ˶¯µÄÖÜÆÚ¹«Ê½¼´¿ÉÕýÈ·½âÌ⣮
| A£® | aA=0¡¢aB=0 | B£® | aA=g¡¢aB=g | C£® | aA=3g¡¢aB=0 | D£® | aA=g¡¢aB=0 |
| A£® | ¼×¡¢ÒÒÁ½ÎïÌå´ÓͬһµØµã³ö·¢ | |
| B£® | ÒÒÎïÌå×öÇúÏßÔ˶¯ | |
| C£® | µ±¼×¡¢ÒÒÁ½ÎïÌåËÙ¶ÈÏàͬʱ£¬¶þÕßÖ®¼äµÄ¾àÀë×î´ó | |
| D£® | ÔÚ¼×ÒÒÔ˶¯¹ý³ÌÖÐÏÈÊÇÒÒ×·ÉÏÁ˼׺óÓÖ±»¼×·´³¬ |
| A£® | E1=E2£¾E0 | |
| B£® | E1=E2=E0 | |
| C£® | Åöײ·¢ÉúÔÚM¡¢NÁ½µãÁ¬ÏßÖеãµÄ×ó²à | |
| D£® | Á½Çòͬʱ·µ»ØM¡¢NÁ½µã |
| A£® | 3£º2£º1 | B£® | 6£º3£º2 | C£® | 9£º5£º11 | D£® | 5£º9£º11 |