ÌâÄ¿ÄÚÈÝ
13£®£¨1£©µç¶¯ÊÆË²Ê±Öµ±í´ïʽ£»
£¨2£©Íâµç×èRÉÏÏûºÄµÄ¹¦ÂÊ£»
£¨3£©´Ó¼ÆÊ±¿ªÊ¼£¬ÏßȦת¹ý90¡ãµÄ¹ý³ÌÖУ¬Í¨¹ýÍâµç×èµÄµçºÉÁ¿£®
·ÖÎö £¨1£©Ïȸù¾ÝUm=nB¦ØL2Çó³ö×î´óÖµ£¬ÔÙ¸ù¾Ý±ÕºÏµç·ŷķ¶¨ÂÉÇó³öµçÁ÷£¬½ø¶øÇó³ö½»±äµçÁ÷˲ʱֵ±í´ïʽ£»
£¨2£©ÏÈÇó³öµçÁ÷µÄÓÐЧֵ£¬¸ù¾ÝP=I2RµÃÍâµç×èÉϵÄÏûºÄ¹¦ÂÊ£»
£¨3£©Çóͨ¹ýÍâµç×èµÄµçºÉÁ¿ÒªÓÃÆ½¾ùµçÁ÷£¬¸ù¾ÝµçºÉÁ¿µÈÓÚÆ½¾ùµçÁ÷³ËÒÔʱ¼ä¼´¿É£®
½â´ð ½â£º£¨1£©ÓÉͼ¿ÉÖª£¬´©¹ýÏß¿òµÄ×î´ó´ÅͨÁ¿£º${¦µ}_{m}=BS=B{L}^{2}=1.0¡Á1{0}^{-2}$Wb
ÖÜÆÚ£ºT=2¡Á10-2s
ËùÒÔÏßȦת¶¯µÄ¼ÓËÙ¶È£º$¦Ø=\frac{2¦Ð}{T}=\frac{2¦Ð}{2¡Á1{0}^{-2}}=100¦Ð$
µç¶¯ÊƵÄ×î´óÖµ£ºEm=nB¦ØL2=100¡Á1.0¡Á10-2¡Á100¦Ð=100¦Ð£¨V£©
µç¶¯ÊÆË²Ê±Öµ±í´ïʽ£ºe=Em•sin¦Øt=100¦Ðsin100¦Ðt£¨V£©
£¨2£©¸ù¾Ý±ÕºÏµç·ŷķ¶¨ÂɵÃ
Im=$\frac{{E}_{m}}{R+r}=\frac{100¦Ð}{1+99}=¦Ð$ A
µçÁ÷µÄÓÐЧֵI=$\frac{{I}_{m}}{\sqrt{2}}=\frac{\sqrt{2}}{2}¦Ð$A
Íâµç×èÉϵÄÏûºÄ¹¦ÂÊ£º
P=I2R=$£¨\frac{\sqrt{2}}{2}¦Ð£©^{2}¡Á99$=$\frac{99{¦Ð}^{2}}{2}$W¡Ö488W
£¨3£©´Ó¼ÆÊ±¿ªÊ¼µ½ÏßȦת¹ý90¡ã¹ý³ÌÖУ¬Æ½¾ù¸ÐÓ¦µç¶¯ÊÆÓÉ$\overline{E}$=n$\frac{¡÷¦µ}{¡÷t}=\frac{BS-0}{¡÷t}$=$\frac{BS}{¡÷t}$
µÃƽ¾ùµçÁ÷£º$\overline{I}=\frac{\overline{E}}{R+r}$
ͨ¹ýÍâµç×èµÄµçºÉÁ¿£ºq=$\overline{I}•¡÷t=\frac{nBS}{R+r}=\frac{100¡Á1.0¡Á1{0}^{-2}}{99+1}C=0.01$C
´ð£º£¨1£©µç¶¯ÊÆË²Ê±Öµ±í´ïʽÊÇe=100¦Ðsin100¦Ðt£¨V£©£»
£¨2£©Íâµç×èRÉÏÏûºÄµÄ¹¦ÂÊÊÇ488W£»
£¨3£©´Ó¼ÆÊ±¿ªÊ¼£¬ÏßȦת¹ý90¡ãµÄ¹ý³ÌÖУ¬Í¨¹ýÍâµç×èµÄµçºÉÁ¿ÊÇ0.01C£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ˽»±äµçÁ÷µÄ˲ʱ±í´ïʽµÄÇó½â·½·¨£¬×¢Ò⹦ÂÊÒªÓÃÓÐЧֵ£¬Í¨¹ýµç×èµÄµçÁ¿ÓÃÆ½¾ùÖµ£®
| A£® | 1.5N | B£® | 3N | C£® | 4.2N | D£® | 5N |
| A£® | $\frac{U}{I}$ | B£® | $\frac{¦ÐU{D}^{2}d}{4IL}$ | C£® | $\frac{¦ÐUDd}{IL}$ | D£® | $\frac{¦ÐU{D}^{2}}{4IL}$ |