题目内容
19.“嫦娥一号”在2007年10月24日发射成功,“嫦娥一号”将在距离月球高为h处绕月球作匀速圆周运动,已知月球半径为R,月球表面的重力加速度为g0,“嫦娥一号”环绕月球运行的周期为多少?分析 根据绕月卫星的万有引力等于向心力和月球表面重力等于万有引力,联立列式求解出周期.
解答 解:(1)绕月卫星绕月球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、月球质量为M,有
$\frac{GMm}{(R+h)^{2}}=m(\frac{2π}{T})^{2}(R+h)$ ①
忽略地球自转的影响:$\frac{GMm}{{R}^{2}}=m{g}_{0}$ ②
①②联立得:$T=2π\sqrt{\frac{(R+h)^{3}}{g{R}^{2}}}$
答:“嫦娥一号”环绕月球运行的周期为$2π\sqrt{\frac{(R+h)^{3}}{g{R}^{2}}}$
点评 本题关键根据绕月卫星受到的万有引力等于向心力,以及近月卫星和近地卫星受到的重力等于向心力列式计算.
练习册系列答案
相关题目
10.质量为m的跳水运动员,从离水面高度为H的跳台以速度v1斜向上方跳起,跳起高度离跳台h,最后以v2速度入水,下列说法中正确的是( )
| A. | 运动员起跳时做的功为$\frac{1}{2}$mv12 | |
| B. | 从起跳到入水,重力对运动员做的功为mgH | |
| C. | 运动员从最高点至入水过程克服空气阻力做的功为mg(H+h)-$\frac{1}{2}$mv22 | |
| D. | 运动员动能的增量等于重力所做的功 |
7.
如图所示,弹簧振子在光滑水平面上做简谐运动,O为平衡位置,A,B为其最大位移处,当振子经过P点时开始计时,即t=0,则下列说法中正确的是( )
| A. | 当振子的速度再次与O时刻相同时,则弹簧振子经过的时间一定是一个周期 | |
| B. | 当振子第二次通过点P点时,振子的速度一定与O时刻的速度相同 | |
| C. | 当振子经过P点时,其加速度与速度均与O时刻相同 | |
| D. | 当振子经过P点时,其加速度与O时刻相同,而速度不一定相等 |
14.
如图所示,小球在一细绳的牵引下,在光滑桌面上绕绳的另一端O作匀速圆周运动,关于小球的受力情况,下列说法中正确的是( )
| A. | 受重力和向心力的作用 | |
| B. | 受重力、支持力、拉力和向心力的作用 | |
| C. | 受重力、支持力和拉力的作用 | |
| D. | 受重力和支持力的作用 |
4.一列简谐横波某时刻的波形如图甲所示,甲图中x=15m 处质点A从该时刻开始计时的振动图象如图乙所示.则( )

| A. | 这列波的波速是20m/s | |
| B. | 这列波沿x轴负方向传播 | |
| C. | 再过0.2s质点A将迁移到x=20 m处 | |
| D. | 质点A在任意的1s内所通过的路程都是0.4m |
9.下列说法中正确的有( )
| A. | 对于同一个运动物体,即使选择不同的参考系,它的运动轨迹也是一样的 | |
| B. | 速度不变的运动就是匀速直线运动 | |
| C. | 物体的重心只能在物体上 | |
| D. | 物体所受的合力为零则物体必定处于静止状态 |